Pseudospectral Time-Domain (PSTD) Methods for the Wave Equation: Realizing Boundary Conditions with Discrete Sine and Cosine Transforms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU138918" target="_blank" >RIV/00216305:26230/21:PU138918 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/abs/2005.00322" target="_blank" >https://arxiv.org/abs/2005.00322</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S2591728520500218" target="_blank" >10.1142/S2591728520500218</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pseudospectral Time-Domain (PSTD) Methods for the Wave Equation: Realizing Boundary Conditions with Discrete Sine and Cosine Transforms
Popis výsledku v původním jazyce
Pseudospectral time domain (PSTD) methods are widely used in many branches of acoustics for the numerical solution of the wave equation, including biomedical ultrasound and seismology. The use of the Fourier collocation spectral method in particular has many computational advantages, including a reduced number of grid points required for accurate simulations. However, the use of a discrete Fourier basis is also inherently restricted to solving problems with periodic boundary conditions. This means that waves exiting one side of the domain reappear on the opposite side. Practically, this is usually overcome by implementing a perfectly matched layer to simulate free-field conditions. However, in some cases, other boundary conditions are required, and these are not straightforward to implement. Here, a family of spectral collocation methods based on the use of a sine or cosine basis is described. These retain the computational advantages of the Fourier collocation method but instead allow homogeneous Dirichlet (sound-soft) and Neumann (sound-hard) boundary conditions to be imposed. The basis function weights are computed numerically using the discrete sine and cosine transforms, which can be implemented using O(N log N ) operations analogous to the fast Fourier transform. The different combinations of discrete symmetry give rise to sixteen possible discrete trigonometric transforms. The properties of these transforms are described, and practical details of how to implement spectral methods using a sine and cosine basis are provided. The technique is then illustrated through the solution of the wave equation in a rectangular domain subject to different combinations of boundary conditions. The extension to boundaries with arbitrary reflection coefficients or boundaries that are non-reflecting is also demonstrated using the weighted summation of the solutions with Dirichlet and Neumann boundary conditions.
Název v anglickém jazyce
Pseudospectral Time-Domain (PSTD) Methods for the Wave Equation: Realizing Boundary Conditions with Discrete Sine and Cosine Transforms
Popis výsledku anglicky
Pseudospectral time domain (PSTD) methods are widely used in many branches of acoustics for the numerical solution of the wave equation, including biomedical ultrasound and seismology. The use of the Fourier collocation spectral method in particular has many computational advantages, including a reduced number of grid points required for accurate simulations. However, the use of a discrete Fourier basis is also inherently restricted to solving problems with periodic boundary conditions. This means that waves exiting one side of the domain reappear on the opposite side. Practically, this is usually overcome by implementing a perfectly matched layer to simulate free-field conditions. However, in some cases, other boundary conditions are required, and these are not straightforward to implement. Here, a family of spectral collocation methods based on the use of a sine or cosine basis is described. These retain the computational advantages of the Fourier collocation method but instead allow homogeneous Dirichlet (sound-soft) and Neumann (sound-hard) boundary conditions to be imposed. The basis function weights are computed numerically using the discrete sine and cosine transforms, which can be implemented using O(N log N ) operations analogous to the fast Fourier transform. The different combinations of discrete symmetry give rise to sixteen possible discrete trigonometric transforms. The properties of these transforms are described, and practical details of how to implement spectral methods using a sine and cosine basis are provided. The technique is then illustrated through the solution of the wave equation in a rectangular domain subject to different combinations of boundary conditions. The extension to boundaries with arbitrary reflection coefficients or boundaries that are non-reflecting is also demonstrated using the weighted summation of the solutions with Dirichlet and Neumann boundary conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Theoretical and Computational Acoustics
ISSN
2591-7285
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
2050021-2050021
Kód UT WoS článku
000736258000001
EID výsledku v databázi Scopus
2-s2.0-85094646283