Wavelet-Galerkin Method for Second-Order Integro-Differential Equations on Product Domains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F21%3A00008551" target="_blank" >RIV/46747885:24510/21:00008551 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.springer.com/gp/book/9783030655082" target="_blank" >https://www.springer.com/gp/book/9783030655082</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-65509-9" target="_blank" >10.1007/978-3-030-65509-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wavelet-Galerkin Method for Second-Order Integro-Differential Equations on Product Domains
Popis výsledku v původním jazyce
The chapter deals with the study of the wavelet-Galerkin method for the numerical solution of the second-order partial integro-differential equations on the product domains. Prescribed boundary conditions are of Dirichlet or Neumann type on each facet of the domain. The variational formulation is derived and the existence and uniqueness of the weak solution are discussed. Multi-dimensional wavelet bases satisfying boundary conditions are constructed by the tensor product of wavelet bases on the interval using an isotropic and anisotropic approaches. The constructed wavelet bases are used in the Galerkin method to find the numerical solution of the integro-differential equations. The convergence of the method is proven and error estimates are derived. The advantage of the method consists in the uniform boundedness of the condition numbers of discretization matrices and in the fact that these matrices exhibit an exponential decay of their elements away from the main diagonal. Based on the decay estimates we propose a compression strategy for approximation of the discretization matrices by sparse or quasi-sparse matrices. Numerical experiments are presented to confirm the theoretical results and to illustrate the efficiency and applicability of the method.
Název v anglickém jazyce
Wavelet-Galerkin Method for Second-Order Integro-Differential Equations on Product Domains
Popis výsledku anglicky
The chapter deals with the study of the wavelet-Galerkin method for the numerical solution of the second-order partial integro-differential equations on the product domains. Prescribed boundary conditions are of Dirichlet or Neumann type on each facet of the domain. The variational formulation is derived and the existence and uniqueness of the weak solution are discussed. Multi-dimensional wavelet bases satisfying boundary conditions are constructed by the tensor product of wavelet bases on the interval using an isotropic and anisotropic approaches. The constructed wavelet bases are used in the Galerkin method to find the numerical solution of the integro-differential equations. The convergence of the method is proven and error estimates are derived. The advantage of the method consists in the uniform boundedness of the condition numbers of discretization matrices and in the fact that these matrices exhibit an exponential decay of their elements away from the main diagonal. Based on the decay estimates we propose a compression strategy for approximation of the discretization matrices by sparse or quasi-sparse matrices. Numerical experiments are presented to confirm the theoretical results and to illustrate the efficiency and applicability of the method.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Topics in Integral and Integro-Differential Equations
ISBN
978-3-030-65508-2
Počet stran výsledku
40
Strana od-do
1-40
Počet stran knihy
255
Název nakladatele
Springer International Publishing
Místo vydání
Switzerland
Kód UT WoS kapitoly
—