Quadratic Spline Wavelets for Sparse Discretization of Jump-Diffusion Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F19%3A00007357" target="_blank" >RIV/46747885:24510/19:00007357 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/11/8/999" target="_blank" >https://www.mdpi.com/2073-8994/11/8/999</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym11080999" target="_blank" >10.3390/sym11080999</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quadratic Spline Wavelets for Sparse Discretization of Jump-Diffusion Models
Popis výsledku v původním jazyce
This paper is concerned with a construction of new quadratic spline wavelets on a bounded interval satisfying homogeneous Dirichlet boundary conditions. The inner wavelets are translations and dilations of four generators. Two of them are symmetrical and two anti-symmetrical. The wavelets have three vanishing moments and the basis is well-conditioned. Furthermore, wavelets at levels i and j where ORi−j OR>2 are orthogonal. Thus, matrices arising from discretization by the Galerkin method with this basis have O(1) nonzero entries in each column for various types of differential equations, which is not the case for most other wavelet bases. To illustrate applicability, the constructed bases are used for option pricing under jump–diffusion models, which are represented by partial integro-differential equations. Due to the orthogonality property and decay of entries of matrices corresponding to the integral term, the Crank–Nicolson method with Richardson extrapolation combined with the wavelet–Galerkin method also leads to matrices that can be approximated by matrices with O(1) nonzero entries in each column. Numerical experiments are provided for European options under the Merton model.
Název v anglickém jazyce
Quadratic Spline Wavelets for Sparse Discretization of Jump-Diffusion Models
Popis výsledku anglicky
This paper is concerned with a construction of new quadratic spline wavelets on a bounded interval satisfying homogeneous Dirichlet boundary conditions. The inner wavelets are translations and dilations of four generators. Two of them are symmetrical and two anti-symmetrical. The wavelets have three vanishing moments and the basis is well-conditioned. Furthermore, wavelets at levels i and j where ORi−j OR>2 are orthogonal. Thus, matrices arising from discretization by the Galerkin method with this basis have O(1) nonzero entries in each column for various types of differential equations, which is not the case for most other wavelet bases. To illustrate applicability, the constructed bases are used for option pricing under jump–diffusion models, which are represented by partial integro-differential equations. Due to the orthogonality property and decay of entries of matrices corresponding to the integral term, the Crank–Nicolson method with Richardson extrapolation combined with the wavelet–Galerkin method also leads to matrices that can be approximated by matrices with O(1) nonzero entries in each column. Numerical experiments are provided for European options under the Merton model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry
ISSN
2073-8994
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
000483559300110
EID výsledku v databázi Scopus
2-s2.0-85070494450