Orthogonal spline-wavelet method for two-asset Black-Scholes and Merton model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F23%3A00011879" target="_blank" >RIV/46747885:24510/23:00011879 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.aip.org/aip/acp/article-abstract/2939/1/100002/2929112/Orthogonal-spline-wavelet-method-for-two-asset?redirectedFrom=fulltext" target="_blank" >https://pubs.aip.org/aip/acp/article-abstract/2939/1/100002/2929112/Orthogonal-spline-wavelet-method-for-two-asset?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0178624" target="_blank" >10.1063/5.0178624</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Orthogonal spline-wavelet method for two-asset Black-Scholes and Merton model
Popis výsledku v původním jazyce
The paper deals with the valuation of two-asset options using the classical Black-Scholes model and a more so-phisticated Merton jump-diffusion model, allowing jumps in the underlying asset price. The Merton model is represented by non-stationary integro-differential equations with two state variables, and the Black-Scholes model can be considered its particular case without the integral term. The drawback of most classical methods is that system matrices are full and poorly conditioned due to the integral term. In this paper, we transform the equation into logarithmic prices and localize it. Then, we use a recently constructed cubic orthogonal spline-wavelet basis and anisotropic tensor-product approach to construct a two-dimensional wavelet basis. We show that the Galerkin method with this basis combined with the Crank-Nicholson scheme for temporal discretization leads to sparse matrices, and due to the orthogonality of the basis, the matrices are well-conditioned even without preconditioning the system. Moreover, higher-order spline wavelets result in higher-order convergence of the method. Numerical experiments are presented for European-type put and call options on the maximum of two assets.
Název v anglickém jazyce
Orthogonal spline-wavelet method for two-asset Black-Scholes and Merton model
Popis výsledku anglicky
The paper deals with the valuation of two-asset options using the classical Black-Scholes model and a more so-phisticated Merton jump-diffusion model, allowing jumps in the underlying asset price. The Merton model is represented by non-stationary integro-differential equations with two state variables, and the Black-Scholes model can be considered its particular case without the integral term. The drawback of most classical methods is that system matrices are full and poorly conditioned due to the integral term. In this paper, we transform the equation into logarithmic prices and localize it. Then, we use a recently constructed cubic orthogonal spline-wavelet basis and anisotropic tensor-product approach to construct a two-dimensional wavelet basis. We show that the Galerkin method with this basis combined with the Crank-Nicholson scheme for temporal discretization leads to sparse matrices, and due to the orthogonality of the basis, the matrices are well-conditioned even without preconditioning the system. Moreover, higher-order spline wavelets result in higher-order convergence of the method. Numerical experiments are presented for European-type put and call options on the maximum of two assets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-17028S" target="_blank" >GA22-17028S: Flexibilní nástroje pro strategické investice a rozhodování: analýza, oceňování a implementace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings
ISBN
978-073544763-9
ISSN
0094-243X
e-ISSN
—
Počet stran výsledku
7
Strana od-do
—
Název nakladatele
American Institute of Physics
Místo vydání
—
Místo konání akce
Sozopol
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—