A Priori Selected Spline-Wavelet Basis for Option Pricing under Black-Scholes and Merton Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F22%3A00010398" target="_blank" >RIV/46747885:24510/22:00010398 - isvavai.cz</a>
Výsledek na webu
<a href="https://aip.scitation.org/doi/abs/10.1063/5.0100641" target="_blank" >https://aip.scitation.org/doi/abs/10.1063/5.0100641</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0100641" target="_blank" >10.1063/5.0100641</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Priori Selected Spline-Wavelet Basis for Option Pricing under Black-Scholes and Merton Model
Popis výsledku v původním jazyce
The paper deals with option pricing under the classical Black-Scholes model and a more sophisticated Merton jump-diffusion model, which allows jumps in the underlying asset price. The Merton model is represented by non-stationary integro-differential equations. Due to the integral term, standard methods are not very efficient because they lead to full discretization matrices. The Black-Scholes model can be considered a particular case of the Merton model, which does not contain the integral term. In the paper, a method is proposed, which is a combination of the Crank-Nicolson scheme and the wavelet-Galerkin method using adaptive quadratic spline wavelet basis selected a priori. This enables to significantly decrease the number of basis functions and size of matrices and vectors involved in computation compared to standard non-adaptive wavelet-Galerkin meth¬ods. Furthermore, the proposed wavelet-based method leads to sparse discretization matrices with uniformly bounded condition numbers.
Název v anglickém jazyce
A Priori Selected Spline-Wavelet Basis for Option Pricing under Black-Scholes and Merton Model
Popis výsledku anglicky
The paper deals with option pricing under the classical Black-Scholes model and a more sophisticated Merton jump-diffusion model, which allows jumps in the underlying asset price. The Merton model is represented by non-stationary integro-differential equations. Due to the integral term, standard methods are not very efficient because they lead to full discretization matrices. The Black-Scholes model can be considered a particular case of the Merton model, which does not contain the integral term. In the paper, a method is proposed, which is a combination of the Crank-Nicolson scheme and the wavelet-Galerkin method using adaptive quadratic spline wavelet basis selected a priori. This enables to significantly decrease the number of basis functions and size of matrices and vectors involved in computation compared to standard non-adaptive wavelet-Galerkin meth¬ods. Furthermore, the proposed wavelet-based method leads to sparse discretization matrices with uniformly bounded condition numbers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings
ISBN
978-073544396-9
ISSN
0094243X
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
American Institute of Physics Inc.
Místo vydání
New York
Místo konání akce
Sozopol
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—