On a Sparse Representation of an n-Dimensional Laplacian in Wavelet Coordinates
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F16%3A00003742" target="_blank" >RIV/46747885:24510/16:00003742 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007/s00025-015-0488-5" target="_blank" >http://link.springer.com/article/10.1007/s00025-015-0488-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00025-015-0488-5" target="_blank" >10.1007/s00025-015-0488-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On a Sparse Representation of an n-Dimensional Laplacian in Wavelet Coordinates
Popis výsledku v původním jazyce
Important parts of adaptive wavelet methods are well-conditioned wavelet stiffness matrices and an efficient approximate multiplication of quasi-sparse stiffness matrices with vectors in wavelet coordinates. Therefore it is useful to develop a well-conditioned wavelet basis with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in each column is bounded by a constant. Consequently, the stiffness matrix corresponding to the n-dimensional Laplacian in the tensor product wavelet basis is also sparse. Then a matrix-vector multiplication can be performed exactly with linear complexity. In this paper, we construct a wavelet basis based on Hermite cubic splines with respect to which both the mass matrix and the stiffness matrix corresponding to a one-dimensional Poisson equation are sparse. Moreover, a proposed basis is well-conditioned on low decomposition levels. Small condition numbers for low decomposition levels and a sparse structure of stiffness matrices are kept for any well-conditioned second order partial differential equations with constant coefficients; furthermore, they are independent of the space dimension.
Název v anglickém jazyce
On a Sparse Representation of an n-Dimensional Laplacian in Wavelet Coordinates
Popis výsledku anglicky
Important parts of adaptive wavelet methods are well-conditioned wavelet stiffness matrices and an efficient approximate multiplication of quasi-sparse stiffness matrices with vectors in wavelet coordinates. Therefore it is useful to develop a well-conditioned wavelet basis with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in each column is bounded by a constant. Consequently, the stiffness matrix corresponding to the n-dimensional Laplacian in the tensor product wavelet basis is also sparse. Then a matrix-vector multiplication can be performed exactly with linear complexity. In this paper, we construct a wavelet basis based on Hermite cubic splines with respect to which both the mass matrix and the stiffness matrix corresponding to a one-dimensional Poisson equation are sparse. Moreover, a proposed basis is well-conditioned on low decomposition levels. Small condition numbers for low decomposition levels and a sparse structure of stiffness matrices are kept for any well-conditioned second order partial differential equations with constant coefficients; furthermore, they are independent of the space dimension.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Results in Mathematics
ISSN
1422-6383
e-ISSN
—
Svazek periodika
69
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
225-243
Kód UT WoS článku
000376102900012
EID výsledku v databázi Scopus
2-s2.0-84955634906