ON A SPARSE REPRESENTATION OF LAPLACIAN
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F12%3A%230000805" target="_blank" >RIV/46747885:24510/12:#0000805 - isvavai.cz</a>
Výsledek na webu
<a href="http://acc-ern.tul.cz/images/journal/sbornik/ACC_Journal_4_2012.pdf" target="_blank" >http://acc-ern.tul.cz/images/journal/sbornik/ACC_Journal_4_2012.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ON A SPARSE REPRESENTATION OF LAPLACIAN
Popis výsledku v původním jazyce
One of the most important part of adaptive wavelet methods is an efficient approximate multiplication of stiffness matrices with vectors in wavelet coordinates. Although there are known algorithms to perform it in linear complexity, the application of them is relatively time consuming and its implementation is very difficult. Therefore, it is necessary to develop a wellconditioned wavelet basis with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzeroelements in any column is bounded by a constant. Then, matrix-vector multiplication can be performed exactly with linear complexity. We present here a wavelet basis on the interval with respect to which both the mass and stiffness matrices correspondingto the one-dimensional Laplacian are sparse. Consequently, the stiffness matrix corresponding to the n-dimensional Laplacian in tensor product wavelet basis is also sparse. Moreover, the constructed basis has an excellent condition number
Název v anglickém jazyce
ON A SPARSE REPRESENTATION OF LAPLACIAN
Popis výsledku anglicky
One of the most important part of adaptive wavelet methods is an efficient approximate multiplication of stiffness matrices with vectors in wavelet coordinates. Although there are known algorithms to perform it in linear complexity, the application of them is relatively time consuming and its implementation is very difficult. Therefore, it is necessary to develop a wellconditioned wavelet basis with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzeroelements in any column is bounded by a constant. Then, matrix-vector multiplication can be performed exactly with linear complexity. We present here a wavelet basis on the interval with respect to which both the mass and stiffness matrices correspondingto the one-dimensional Laplacian are sparse. Consequently, the stiffness matrix corresponding to the n-dimensional Laplacian in tensor product wavelet basis is also sparse. Moreover, the constructed basis has an excellent condition number
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACC Journal
ISSN
1803-9782
e-ISSN
—
Svazek periodika
XVIII
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
6
Strana od-do
40-45
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—