Resource Efficient Mountainous Skyline Extraction using Shallow Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU140739" target="_blank" >RIV/00216305:26230/21:PU140739 - isvavai.cz</a>
Výsledek na webu
<a href="http://cadik.posvete.cz/papers/IJCNN21_Skyline_Final.pdf" target="_blank" >http://cadik.posvete.cz/papers/IJCNN21_Skyline_Final.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN52387.2021.9533859" target="_blank" >10.1109/IJCNN52387.2021.9533859</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Resource Efficient Mountainous Skyline Extraction using Shallow Learning
Popis výsledku v původním jazyce
Skyline plays a pivotal role in mountainous visual geo-localization and localization/navigation of planetary rovers/UAVs and virtual/augmented reality applications. We present a novel mountainous skyline detection approach where we adapt a shallow learning approach to learn a set of filters to discriminate between edges belonging to sky-mountain boundary and others coming from different regions. Unlike earlier approaches, which either rely on extraction of explicit feature descriptors and their classification, or fine-tuning general scene parsing deep networks for sky segmentation, our approach learns linear filters based on local structure analysis. At test time, for every candidate edge pixel, a single filter is chosen from the set of learned filters based on pixels structure tensor, and then applied to the patch around it. We then employ dynamic programming to solve the shortest path problem for the resultant multistage graph to get the sky-mountain boundary. The proposed approach is computationally faster than earlier methods while providing comparable performance and is more suitable for resource constrained platforms e.g., mobile devices, planetary rovers and UAVs. We compare our proposed approach against earlier skyline detection methods using four different data sets. Our code is available at https://github.com/TouqeerAhmad/skylinedetection
Název v anglickém jazyce
Resource Efficient Mountainous Skyline Extraction using Shallow Learning
Popis výsledku anglicky
Skyline plays a pivotal role in mountainous visual geo-localization and localization/navigation of planetary rovers/UAVs and virtual/augmented reality applications. We present a novel mountainous skyline detection approach where we adapt a shallow learning approach to learn a set of filters to discriminate between edges belonging to sky-mountain boundary and others coming from different regions. Unlike earlier approaches, which either rely on extraction of explicit feature descriptors and their classification, or fine-tuning general scene parsing deep networks for sky segmentation, our approach learns linear filters based on local structure analysis. At test time, for every candidate edge pixel, a single filter is chosen from the set of learned filters based on pixels structure tensor, and then applied to the patch around it. We then employ dynamic programming to solve the shortest path problem for the resultant multistage graph to get the sky-mountain boundary. The proposed approach is computationally faster than earlier methods while providing comparable performance and is more suitable for resource constrained platforms e.g., mobile devices, planetary rovers and UAVs. We compare our proposed approach against earlier skyline detection methods using four different data sets. Our code is available at https://github.com/TouqeerAhmad/skylinedetection
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIZ19004" target="_blank" >LTAIZ19004: Topografická analýza obrazu s využitím metod hlubokého učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Joint Conference on Neural Networks (IJCNN)
ISBN
978-1-6654-3900-8
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1-9
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Hoffman Estates
Místo konání akce
USA
Datum konání akce
18. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000722581704065