High accuracy local stereo matching using DoG scale map
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312838" target="_blank" >RIV/68407700:21230/17:00312838 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.23919/MVA.2017.7986850" target="_blank" >http://dx.doi.org/10.23919/MVA.2017.7986850</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/MVA.2017.7986850" target="_blank" >10.23919/MVA.2017.7986850</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High accuracy local stereo matching using DoG scale map
Popis výsledku v původním jazyce
Local matching is one of approaches for stereo matching which needs cost aggregation. In Guided Filter based method proposed by Hosni, the cost map is smoothed by Guided Filter using original image as a guiding image. However, the Guided Filter sometimes fails when there are regions whose textures are same but disparities are different. Thus, parameter tuning for filter size of Guided Filter is difficult to obtain the best accuracy. In this paper we propose an algorithm for automatic filter size selection for each pixel of Guided Filter based stereo matching based on the response of the Different of Gaussian (DoG). In our algorithm, we generate the Filter-Size map whose pixel value for each pixel is appropriate filter size. The value of the Filter-Size map is the largest size of the filtering area around the pixel in interest calculated such that more than two edges are not included in filtering area. In our experiments, we evaluated accuracy of Guided Filter based method with our algorithm for selecting filter size compared with the original Guided Filter based method without our algorithm. By using the Middle-bury datasets, the experimental results shows our algorithm's superiority in accuracy.
Název v anglickém jazyce
High accuracy local stereo matching using DoG scale map
Popis výsledku anglicky
Local matching is one of approaches for stereo matching which needs cost aggregation. In Guided Filter based method proposed by Hosni, the cost map is smoothed by Guided Filter using original image as a guiding image. However, the Guided Filter sometimes fails when there are regions whose textures are same but disparities are different. Thus, parameter tuning for filter size of Guided Filter is difficult to obtain the best accuracy. In this paper we propose an algorithm for automatic filter size selection for each pixel of Guided Filter based stereo matching based on the response of the Different of Gaussian (DoG). In our algorithm, we generate the Filter-Size map whose pixel value for each pixel is appropriate filter size. The value of the Filter-Size map is the largest size of the filtering area around the pixel in interest calculated such that more than two edges are not included in filtering area. In our experiments, we evaluated accuracy of Guided Filter based method with our algorithm for selecting filter size compared with the original Guided Filter based method without our algorithm. By using the Middle-bury datasets, the experimental results shows our algorithm's superiority in accuracy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Machine Vision Applications (MVA), 2017 15th IAPR International Conference on
ISBN
978-4-901122-16-0
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
258-261
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Nagoya
Datum konání akce
8. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426950300064