A Network Traffic Processing Library for ICS Anomaly Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU140791" target="_blank" >RIV/00216305:26230/21:PU140791 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/12483/" target="_blank" >https://www.fit.vut.cz/research/publication/12483/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3459960.3459963" target="_blank" >10.1145/3459960.3459963</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Network Traffic Processing Library for ICS Anomaly Detection
Popis výsledku v původním jazyce
Anomaly detection in industrial control systems based on traffic monitoring is one of the key components in securing these critical cyber-physical environments. Many anomaly detection methods have been proposed in the past decade. They are based on various principles stemming from signature detection, statistical analysis, or machine learning. Because of the lack of ICS communication datasets, their evaluation and mainly comparing their performance is problematic. If provided as a prototype implementation, the methods are implemented in various languages and require different input formats. In the present paper, we propose a library that can process ICS communication, extract required information, e.g., various packet-level or flow-level features, and provide the data to a user-specified anomaly detection method. It is possible to integrate the library in the system that automates the entire processing pipeline enabling us to conduct experiments with different methods while saving the time needed for manual data preparation. We also provide a preliminary performance evaluation of the library and demonstrate the system using two simple anomaly detection methods.
Název v anglickém jazyce
A Network Traffic Processing Library for ICS Anomaly Detection
Popis výsledku anglicky
Anomaly detection in industrial control systems based on traffic monitoring is one of the key components in securing these critical cyber-physical environments. Many anomaly detection methods have been proposed in the past decade. They are based on various principles stemming from signature detection, statistical analysis, or machine learning. Because of the lack of ICS communication datasets, their evaluation and mainly comparing their performance is problematic. If provided as a prototype implementation, the methods are implemented in various languages and require different input formats. In the present paper, we propose a library that can process ICS communication, extract required information, e.g., various packet-level or flow-level features, and provide the data to a user-specified anomaly detection method. It is possible to integrate the library in the system that automates the entire processing pipeline enabling us to conduct experiments with different methods while saving the time needed for manual data preparation. We also provide a preliminary performance evaluation of the library and demonstrate the system using two simple anomaly detection methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20192022138" target="_blank" >VI20192022138: Bezpečnostní monitorování řídicí komunikace ICS v energetických sítích (BONNET)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ECBS '21: Proceedings of the 7th Conference on the Engineering of Computer Based Systems
ISBN
978-1-4503-9057-6
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
144-151
Název nakladatele
Association for Computing Machinery
Místo vydání
Novi Sad
Místo konání akce
Novi Sad
Datum konání akce
26. 5. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—