Statistical Methods for Anomaly Detection in Industrial Communication
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU140800" target="_blank" >RIV/00216305:26230/21:PU140800 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/12502/" target="_blank" >https://www.fit.vut.cz/research/publication/12502/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Statistical Methods for Anomaly Detection in Industrial Communication
Popis výsledku v původním jazyce
This report focuses on application of selected statistical methods to anomaly detection of ICS protocols deployed in smart grids, namely IEC 104, GOOSE and MMS. Industrial network stations are typically pre-configured hardware devices that operate in master-slave mode and exhibits stable and periodic communication patterns over a long time. Due to the stability of ICS communication, statistical models present a natural way for detection of common ICS anomalies. For probabilistic modeling of network behavior we employ the following statistical features: distribution of packet inter-arrival times, packet size, and packet direction. This report presents the results of our experiments with three statistical methods: the Box Plot, Three Sigma Rule and Local Outlier Factor (LOF) which worked best for ICS datasets.
Název v anglickém jazyce
Statistical Methods for Anomaly Detection in Industrial Communication
Popis výsledku anglicky
This report focuses on application of selected statistical methods to anomaly detection of ICS protocols deployed in smart grids, namely IEC 104, GOOSE and MMS. Industrial network stations are typically pre-configured hardware devices that operate in master-slave mode and exhibits stable and periodic communication patterns over a long time. Due to the stability of ICS communication, statistical models present a natural way for detection of common ICS anomalies. For probabilistic modeling of network behavior we employ the following statistical features: distribution of packet inter-arrival times, packet size, and packet direction. This report presents the results of our experiments with three statistical methods: the Box Plot, Three Sigma Rule and Local Outlier Factor (LOF) which worked best for ICS datasets.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20192022138" target="_blank" >VI20192022138: Bezpečnostní monitorování řídicí komunikace ICS v energetických sítích (BONNET)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů