Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Semantically-oriented mutation operator in cartesian genetic programming for evolutionary circuit design

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142942" target="_blank" >RIV/00216305:26230/21:PU142942 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007%2Fs10710-021-09416-6" target="_blank" >https://link.springer.com/article/10.1007%2Fs10710-021-09416-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10710-021-09416-6" target="_blank" >10.1007/s10710-021-09416-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Semantically-oriented mutation operator in cartesian genetic programming for evolutionary circuit design

  • Popis výsledku v původním jazyce

    Cartesian genetic programming (CGP) represents the most efficient method for the evolution of digital circuits. Despite many successful applications, however, CGP suffers from limited scalability, especially when used for evolutionary circuit design, i.e. design of circuits from a randomly initialized population. Considering the multiplier design problem, for example, the 5×5-bit multiplier represents the most complex circuit designed by the evolution from scratch. The efficiency of CGP highly depends on the performance of the point mutation operator, however, this operator is purely stochastic. This contrasts with the recent developments in genetic programming (GP), where advanced informed approaches such as semantic-aware operators are incorporated to improve the search space exploration capability of GP. In this paper, we propose a semantically-oriented mutation operator (SOMOk) suitable for the evolutionary design of combinational circuits. In contrast to standard point mutation modifying the values of the mutated genes randomly, the proposed operator uses semantics to determine the best value for each mutated gene. Compared to the common CGP and its variants, the proposed method converges on common Boolean benchmarks substantially faster while keeping the phenotype size relatively small. The successfully evolved instances presented in this paper include 10-bit parity, 10 + 10-bit adder and 5×5-bit multiplier. The most complex circuits were evolved in less than one hour with a single-thread implementation running on a common CPU.

  • Název v anglickém jazyce

    Semantically-oriented mutation operator in cartesian genetic programming for evolutionary circuit design

  • Popis výsledku anglicky

    Cartesian genetic programming (CGP) represents the most efficient method for the evolution of digital circuits. Despite many successful applications, however, CGP suffers from limited scalability, especially when used for evolutionary circuit design, i.e. design of circuits from a randomly initialized population. Considering the multiplier design problem, for example, the 5×5-bit multiplier represents the most complex circuit designed by the evolution from scratch. The efficiency of CGP highly depends on the performance of the point mutation operator, however, this operator is purely stochastic. This contrasts with the recent developments in genetic programming (GP), where advanced informed approaches such as semantic-aware operators are incorporated to improve the search space exploration capability of GP. In this paper, we propose a semantically-oriented mutation operator (SOMOk) suitable for the evolutionary design of combinational circuits. In contrast to standard point mutation modifying the values of the mutated genes randomly, the proposed operator uses semantics to determine the best value for each mutated gene. Compared to the common CGP and its variants, the proposed method converges on common Boolean benchmarks substantially faster while keeping the phenotype size relatively small. The successfully evolved instances presented in this paper include 10-bit parity, 10 + 10-bit adder and 5×5-bit multiplier. The most complex circuits were evolved in less than one hour with a single-thread implementation running on a common CPU.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-10137S" target="_blank" >GA19-10137S: Navrhování a využívání knihoven aproximativních obvodů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Genetic Programming and Evolvable Machines

  • ISSN

    1389-2576

  • e-ISSN

    1573-7632

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    34

  • Strana od-do

    539-572

  • Kód UT WoS článku

    000702806100001

  • EID výsledku v databázi Scopus

    2-s2.0-85116194943