Evolutionary Approximation in Non-Local Means Image Filters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU145930" target="_blank" >RIV/00216305:26230/22:PU145930 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/SMC53654.2022.9945091" target="_blank" >http://dx.doi.org/10.1109/SMC53654.2022.9945091</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC53654.2022.9945091" target="_blank" >10.1109/SMC53654.2022.9945091</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolutionary Approximation in Non-Local Means Image Filters
Popis výsledku v původním jazyce
The non-local means image filter is a non-trivial denoising algorithm for color images utilizing floating-point arithmetic operations in its reference software implementation. In order to simplify this algorithm for an on-chip implementation, we investigate the impact of various number representations and approximate arithmetic operators on the quality of image filtering. We employ Cartesian Genetic Programming (CGP) to evolve approximate implementations of a 20-bit signed multiplier which is then applied in the image filter instead of the conventional 32-bit floating-point multiplier. In addition to using several techniques that reduce the huge design cost, we propose a new mutation operator for CGP to improve the search quality and obtain better approximate multipliers than with CGP utilizing the standard mutation operator. Image filters utilizing evolved approximate multipliers can save 35% in power consumption of multiplication operations for a negligible drop in the image filtering quality.
Název v anglickém jazyce
Evolutionary Approximation in Non-Local Means Image Filters
Popis výsledku anglicky
The non-local means image filter is a non-trivial denoising algorithm for color images utilizing floating-point arithmetic operations in its reference software implementation. In order to simplify this algorithm for an on-chip implementation, we investigate the impact of various number representations and approximate arithmetic operators on the quality of image filtering. We employ Cartesian Genetic Programming (CGP) to evolve approximate implementations of a 20-bit signed multiplier which is then applied in the image filter instead of the conventional 32-bit floating-point multiplier. In addition to using several techniques that reduce the huge design cost, we propose a new mutation operator for CGP to improve the search quality and obtain better approximate multipliers than with CGP utilizing the standard mutation operator. Image filters utilizing evolved approximate multipliers can save 35% in power consumption of multiplication operations for a negligible drop in the image filtering quality.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Aproximativní neurovýpočty</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
ISBN
978-1-6654-5258-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
2759-2766
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
9. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—