SagTree: Towards Efficient Mutation in Evolutionary Circuit Approximation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU142950" target="_blank" >RIV/00216305:26230/22:PU142950 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2210650221001486" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210650221001486</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.swevo.2021.100986" target="_blank" >10.1016/j.swevo.2021.100986</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SagTree: Towards Efficient Mutation in Evolutionary Circuit Approximation
Popis výsledku v původním jazyce
Approximate circuits that trade the chip area for the quality of results play a key role in the development of energy-aware systems. Designing complex approximate circuits is, however, a very difficult and computationally demanding process. Evolutionary approximation - in particular, the method of Cartesian Genetic Programming (CGP) - currently represents one of the most successful approaches for automated circuit approximation. In this paper, we thoroughly investigate mutation operators for CGP with respect to the performance of circuit approximation. We design a novel dedicated operator that combines the classical single active gene mutation with a node deactivation operation (eliminating a part of the circuit forming a tree from an active gate). We show that our new operator significantly outperforms other operators on a wide class of approximation problems (such as 16 bit multipliers and dividers) and thus improves the performance of the state-of-the-art approximation techniques. Our results are grounded on a rigorous statistical evaluation including 39 approximation scenarios and 14,000 runs.
Název v anglickém jazyce
SagTree: Towards Efficient Mutation in Evolutionary Circuit Approximation
Popis výsledku anglicky
Approximate circuits that trade the chip area for the quality of results play a key role in the development of energy-aware systems. Designing complex approximate circuits is, however, a very difficult and computationally demanding process. Evolutionary approximation - in particular, the method of Cartesian Genetic Programming (CGP) - currently represents one of the most successful approaches for automated circuit approximation. In this paper, we thoroughly investigate mutation operators for CGP with respect to the performance of circuit approximation. We design a novel dedicated operator that combines the classical single active gene mutation with a node deactivation operation (eliminating a part of the circuit forming a tree from an active gate). We show that our new operator significantly outperforms other operators on a wide class of approximation problems (such as 16 bit multipliers and dividers) and thus improves the performance of the state-of-the-art approximation techniques. Our results are grounded on a rigorous statistical evaluation including 39 approximation scenarios and 14,000 runs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-02328Y" target="_blank" >GJ20-02328Y: CAQtuS: Počítačem podporovaná kvantitativní syntéza</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Swarm and Evolutionary Computation
ISSN
2210-6502
e-ISSN
2210-6510
Svazek periodika
69
Číslo periodika v rámci svazku
100986
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000820715300004
EID výsledku v databázi Scopus
2-s2.0-85117233906