Boosting of Contextual Information in ASR for Air-Traffic Call-Sign Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142968" target="_blank" >RIV/00216305:26230/21:PU142968 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isca-speech.org/archive/interspeech_2021/kocour21_interspeech.html" target="_blank" >https://www.isca-speech.org/archive/interspeech_2021/kocour21_interspeech.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2021-1619" target="_blank" >10.21437/Interspeech.2021-1619</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boosting of Contextual Information in ASR for Air-Traffic Call-Sign Recognition
Popis výsledku v původním jazyce
Contextual adaptation of ASR can be very beneficial for multiaccent and often noisy Air-Traffic Control (ATC) speech. Our focus is call-sign recognition, which can be used to track conversations of ATC operators with individual airplanes. We developed a two-stage boosting strategy, consisting of HCLG boosting and Lattice boosting. Both are implemented as WFST compositions and the contextual information is specific to each utterance. In HCLG boosting we give score discounts to individual words, while in Lattice boosting the score discounts are given to word sequences. The context data have origin in surveillance database of OpenSky Network. From this, we obtain lists of call-signs that are made more likely to appear in the best hypothesis of ASR. This also improves the accuracy of the NLU module that recognizes the call-signs from the best hypothesis of ASR. As part of ATCO2 project, we collected liveatc test set2. The boosting of call-signs leads to 4.7% absolute WER improvement and 27.1% absolute increase of Call-Sign recognition Accuracy (CSA). Our best result of 82.9% CSA is quite good, given that the data is noisy, and WER 28.4% is relatively high. We believe there is still room for improvement.
Název v anglickém jazyce
Boosting of Contextual Information in ASR for Air-Traffic Call-Sign Recognition
Popis výsledku anglicky
Contextual adaptation of ASR can be very beneficial for multiaccent and often noisy Air-Traffic Control (ATC) speech. Our focus is call-sign recognition, which can be used to track conversations of ATC operators with individual airplanes. We developed a two-stage boosting strategy, consisting of HCLG boosting and Lattice boosting. Both are implemented as WFST compositions and the contextual information is specific to each utterance. In HCLG boosting we give score discounts to individual words, while in Lattice boosting the score discounts are given to word sequences. The context data have origin in surveillance database of OpenSky Network. From this, we obtain lists of call-signs that are made more likely to appear in the best hypothesis of ASR. This also improves the accuracy of the NLU module that recognizes the call-signs from the best hypothesis of ASR. As part of ATCO2 project, we collected liveatc test set2. The boosting of call-signs leads to 4.7% absolute WER improvement and 27.1% absolute increase of Call-Sign recognition Accuracy (CSA). Our best result of 82.9% CSA is quite good, given that the data is noisy, and WER 28.4% is relatively high. We believe there is still room for improvement.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings Interspeech 2021
ISBN
—
ISSN
1990-9772
e-ISSN
—
Počet stran výsledku
5
Strana od-do
3301-3305
Název nakladatele
International Speech Communication Association
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
30. 8. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—