Call-Sign Recognition and Understanding for Noisy Air-Traffic Transcripts Using Surveillance Information
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU144937" target="_blank" >RIV/00216305:26230/22:PU144937 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9746301" target="_blank" >https://ieeexplore.ieee.org/document/9746301</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP43922.2022.9746301" target="_blank" >10.1109/ICASSP43922.2022.9746301</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Call-Sign Recognition and Understanding for Noisy Air-Traffic Transcripts Using Surveillance Information
Popis výsledku v původním jazyce
Air traffic control (ATC) relies on communication via speech between pilot and air-traffic controller (ATCO). The call-sign, as unique identifier for each flight, is used to address a specific pilot by the ATCO. Extracting the call-sign from the communication is a challenge because of the noisy ATC voice channel and the additional noise introduced by the receiver. A low signal-to-noise ratio (SNR) in the speech leads to high word error rate (WER) transcripts. We propose a new call-sign recognition and understanding (CRU) system that addresses this issue. The recognizer is trained to identify call-signs in noisy ATC transcripts and convert them into the standard International Civil Aviation Organization (ICAO) format. By incorporating surveillance information, we can multiply the call-sign accuracy (CSA) up to a factor of four. The introduced data augmentation adds additional performance on high WER transcripts and allows the adaptation of the model to unseen airspaces.
Název v anglickém jazyce
Call-Sign Recognition and Understanding for Noisy Air-Traffic Transcripts Using Surveillance Information
Popis výsledku anglicky
Air traffic control (ATC) relies on communication via speech between pilot and air-traffic controller (ATCO). The call-sign, as unique identifier for each flight, is used to address a specific pilot by the ATCO. Extracting the call-sign from the communication is a challenge because of the noisy ATC voice channel and the additional noise introduced by the receiver. A low signal-to-noise ratio (SNR) in the speech leads to high word error rate (WER) transcripts. We propose a new call-sign recognition and understanding (CRU) system that addresses this issue. The recognizer is trained to identify call-signs in noisy ATC transcripts and convert them into the standard International Civil Aviation Organization (ICAO) format. By incorporating surveillance information, we can multiply the call-sign accuracy (CSA) up to a factor of four. The introduced data augmentation adds additional performance on high WER transcripts and allows the adaptation of the model to unseen airspaces.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISBN
978-1-6654-0540-9
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
8357-8361
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Singapore
Místo konání akce
Singapore
Datum konání akce
22. 5. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000864187908133