Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Screening Process Mining and Value Stream Techniques on Industrial Manufacturing Processes: Process Modelling and Bottleneck Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU144164" target="_blank" >RIV/00216305:26230/22:PU144164 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9715073" target="_blank" >https://ieeexplore.ieee.org/document/9715073</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2022.3152211" target="_blank" >10.1109/ACCESS.2022.3152211</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Screening Process Mining and Value Stream Techniques on Industrial Manufacturing Processes: Process Modelling and Bottleneck Analysis

  • Popis výsledku v původním jazyce

    One major result of the Industrial Digitalization is the access to a large set of digitalized data and information, i.e. Big Data. The market of analytic tools offers a huge variety of algorithms and software to exploit big datasets. Implementing their advantages into one approach brings better results and empower possibilities for process analysis. Its application in the manufacturing industry requires a high level of effort and remains to be challenging due to product complexity, human-centric processes, and data quality. In this manuscript, the authors combine process mining and value streams methods for analyzing the data from the information management system, applying the approach to the data delivered by one specific manufacturing system. The manufacturing process to be examined is the process of assembling gas meters in the manufacture. This specific and important part of the whole supply-chain process was taken as suitable for the study due to almost full-automated line with data about each process activity of the value-stream in the information system. The paper applies process mining algorithms in discovering a descriptive process model that plays the main role as a basis for further analysis. At the same time, modern techniques of the bottleneck analysis are described, and two new comprehensible methods of bottlenecks detection (TimeLag and Confidence intervals methods), as well as their advantages, will be discussed. Achieved results can be subsequently used for other sources of big data and industrial-compliant Information Management Systems.

  • Název v anglickém jazyce

    Screening Process Mining and Value Stream Techniques on Industrial Manufacturing Processes: Process Modelling and Bottleneck Analysis

  • Popis výsledku anglicky

    One major result of the Industrial Digitalization is the access to a large set of digitalized data and information, i.e. Big Data. The market of analytic tools offers a huge variety of algorithms and software to exploit big datasets. Implementing their advantages into one approach brings better results and empower possibilities for process analysis. Its application in the manufacturing industry requires a high level of effort and remains to be challenging due to product complexity, human-centric processes, and data quality. In this manuscript, the authors combine process mining and value streams methods for analyzing the data from the information management system, applying the approach to the data delivered by one specific manufacturing system. The manufacturing process to be examined is the process of assembling gas meters in the manufacture. This specific and important part of the whole supply-chain process was taken as suitable for the study due to almost full-automated line with data about each process activity of the value-stream in the information system. The paper applies process mining algorithms in discovering a descriptive process model that plays the main role as a basis for further analysis. At the same time, modern techniques of the bottleneck analysis are described, and two new comprehensible methods of bottlenecks detection (TimeLag and Confidence intervals methods), as well as their advantages, will be discussed. Achieved results can be subsequently used for other sources of big data and industrial-compliant Information Management Systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    2022

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    24203-24214

  • Kód UT WoS článku

    000766543100001

  • EID výsledku v databázi Scopus

    2-s2.0-85124816007