Delay-aware evolutionary optimization of digital circuits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU144733" target="_blank" >RIV/00216305:26230/22:PU144733 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ISVLSI54635.2022.00045" target="_blank" >http://dx.doi.org/10.1109/ISVLSI54635.2022.00045</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISVLSI54635.2022.00045" target="_blank" >10.1109/ISVLSI54635.2022.00045</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Delay-aware evolutionary optimization of digital circuits
Popis výsledku v původním jazyce
In the recent years, machine learning techniques have successfully been applied in various areas of digital circuit design including logic synthesis. Evolutionary resynthesis, among others, represents one of the machine learning approaches. This technique is based on local iterative optimization of parts of the original circuit. Even though the local optimization could be inefficient compared to the optimization conducted on the whole circuits, it has been shown that the resynthesis performs extremely well. It produces more compact solutions compared to the state-of-the art synthesis methods. In addition, it scales significantly better compared to the evolutionary optimization performed at the level of the original circuit. The previous methods have been focused solely on the optimization of the number of gates. In this paper, we analyse how the local optimization affects the delay of the resulting circuits and based on that, we propose a modified approach that considers the delay in the course of the optimization process. The proposed modification enables to maintain the delay of the optimized circuit at a reasonable level without a significant overhead. The evaluation conducted on a set of non-trivial highly optimized benchmark circuits representing various real-world circuits demonstrated that the proposed method is able to remove a significant number of gates while preserving the delay within the requested bounds.
Název v anglickém jazyce
Delay-aware evolutionary optimization of digital circuits
Popis výsledku anglicky
In the recent years, machine learning techniques have successfully been applied in various areas of digital circuit design including logic synthesis. Evolutionary resynthesis, among others, represents one of the machine learning approaches. This technique is based on local iterative optimization of parts of the original circuit. Even though the local optimization could be inefficient compared to the optimization conducted on the whole circuits, it has been shown that the resynthesis performs extremely well. It produces more compact solutions compared to the state-of-the art synthesis methods. In addition, it scales significantly better compared to the evolutionary optimization performed at the level of the original circuit. The previous methods have been focused solely on the optimization of the number of gates. In this paper, we analyse how the local optimization affects the delay of the resulting circuits and based on that, we propose a modified approach that considers the delay in the course of the optimization process. The proposed modification enables to maintain the delay of the optimized circuit at a reasonable level without a significant overhead. The evaluation conducted on a set of non-trivial highly optimized benchmark circuits representing various real-world circuits demonstrated that the proposed method is able to remove a significant number of gates while preserving the delay within the requested bounds.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Aproximativní neurovýpočty</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI
ISBN
978-1-6654-6605-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
188-193
Název nakladatele
IEEE Computer Society
Místo vydání
Nicosia, Cyprus
Místo konání akce
Kypr
Datum konání akce
4. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000886230500032