Inductive Synthesis of Finite-State Controllers for POMDPs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU144764" target="_blank" >RIV/00216305:26230/22:PU144764 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inductive Synthesis of Finite-State Controllers for POMDPs
Popis výsledku v původním jazyce
We present a novel learning framework to obtain finite-state controllers (FSCs) for partially observable Markov decision processes and illustrate its applicability for indefinite-horizon specifications. Our framework builds on oracle-guided inductive synthesis to explore a design space compactly representing available FSCs. The inductive synthesis approach consists of two stages: The outer stage determines the design space, i.e., the set of FSC candidates, while the inner stage efficiently explores the design space. This framework is easily generalisable and shows promising results when compared to existing approaches. Experiments indicate that our technique is (i) competitive to state-of-the-art belief-based approaches for indefinite-horizon properties, (ii) yields smaller FSCs than existing methods for several POMDP models, and (iii) naturally treats multi-objective specifications.
Název v anglickém jazyce
Inductive Synthesis of Finite-State Controllers for POMDPs
Popis výsledku anglicky
We present a novel learning framework to obtain finite-state controllers (FSCs) for partially observable Markov decision processes and illustrate its applicability for indefinite-horizon specifications. Our framework builds on oracle-guided inductive synthesis to explore a design space compactly representing available FSCs. The inductive synthesis approach consists of two stages: The outer stage determines the design space, i.e., the set of FSC candidates, while the inner stage efficiently explores the design space. This framework is easily generalisable and shows promising results when compared to existing approaches. Experiments indicate that our technique is (i) competitive to state-of-the-art belief-based approaches for indefinite-horizon properties, (ii) yields smaller FSCs than existing methods for several POMDP models, and (iii) naturally treats multi-objective specifications.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-02328Y" target="_blank" >GJ20-02328Y: CAQtuS: Počítačem podporovaná kvantitativní syntéza</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Conference on Uncertainty in Artificial Intelligence
ISBN
—
ISSN
2640-3498
e-ISSN
—
Počet stran výsledku
11
Strana od-do
85-95
Název nakladatele
Proceedings of Machine Learning Research
Místo vydání
Eindhoven
Místo konání akce
Eindhoven
Datum konání akce
1. 8. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—