Speaker adaptation for Wav2vec2 based dysarthric ASR
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU146142" target="_blank" >RIV/00216305:26230/22:PU146142 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isca-speech.org/archive/pdfs/interspeech_2022/baskar22b_interspeech.pdf" target="_blank" >https://www.isca-speech.org/archive/pdfs/interspeech_2022/baskar22b_interspeech.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2022-10896" target="_blank" >10.21437/Interspeech.2022-10896</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Speaker adaptation for Wav2vec2 based dysarthric ASR
Popis výsledku v původním jazyce
Dysarthric speech recognition has posed major challenges due to lack of training data and heavy mismatch in speaker characteristics. Recent ASR systems have benefited from readily available pretrained models such as wav2vec2 to improve the recognition performance. Speaker adaptation using fMLLR and xvectors have provided major gains for dysarthric speech with very little adaptation data. However, integration of wav2vec2 with fMLLR features or xvectors during wav2vec2 finetuning is yet to be explored. In this work, we propose a simple adaptation network for fine-tuning wav2vec2 using fMLLR features. The adaptation network is also flexible to handle other speaker adaptive features such as xvectors. Experimental analysis show steady improvements using our proposed approach across all impairment severity levels and attains 57.72% WER for high severity in UASpeech dataset. We also performed experiments on German dataset to substantiate the consistency of our proposed approach across diverse domains.
Název v anglickém jazyce
Speaker adaptation for Wav2vec2 based dysarthric ASR
Popis výsledku anglicky
Dysarthric speech recognition has posed major challenges due to lack of training data and heavy mismatch in speaker characteristics. Recent ASR systems have benefited from readily available pretrained models such as wav2vec2 to improve the recognition performance. Speaker adaptation using fMLLR and xvectors have provided major gains for dysarthric speech with very little adaptation data. However, integration of wav2vec2 with fMLLR features or xvectors during wav2vec2 finetuning is yet to be explored. In this work, we propose a simple adaptation network for fine-tuning wav2vec2 using fMLLR features. The adaptation network is also flexible to handle other speaker adaptive features such as xvectors. Experimental analysis show steady improvements using our proposed approach across all impairment severity levels and attains 57.72% WER for high severity in UASpeech dataset. We also performed experiments on German dataset to substantiate the consistency of our proposed approach across diverse domains.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
ISBN
—
ISSN
1990-9772
e-ISSN
—
Počet stran výsledku
5
Strana od-do
3403-3407
Název nakladatele
International Speech Communication Association
Místo vydání
Incheon
Místo konání akce
Incheon Korea
Datum konání akce
18. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—