Resources and Benchmarks for Keyword Search in Spoken Audio From Low-Resource Indian Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU147441" target="_blank" >RIV/00216305:26230/22:PU147441 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9743904" target="_blank" >https://ieeexplore.ieee.org/document/9743904</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3162854" target="_blank" >10.1109/ACCESS.2022.3162854</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Resources and Benchmarks for Keyword Search in Spoken Audio From Low-Resource Indian Languages
Popis výsledku v původním jazyce
This paper presents the resources and benchmarks developed for keyword search (KWS) in spoken audio from six low-resource Indian languages (from two families), namely Gujarati, Hindi, Marathi, Odia, Tamil, and Telugu. The current work on constructing keywords and building benchmark KWS systems is inspired by the popular IARPA Babel program and the subsequent works on low-resource KWS. The keywords are constructed by taking into account their properties i.e., occurrence, length, and average confusability; and their effects on the evaluation metric - the term-weighted value (TWV).We make use of freely available speech datasets, and reprocess them to create resources for KWS, thereby adding value to the existing speech resources. Four ASR-based KWS systems are built, and their performance is analyzed across the three keyword properties on all the six languages. The prepared keywords and other related resources to replicate our experiments are made available for the public.We believe that the analysis and guidelines provided in this paper will not only help the research community, but also practitioners and engineers to easily create KWS resources for newer languages, datasets, and scenarios.
Název v anglickém jazyce
Resources and Benchmarks for Keyword Search in Spoken Audio From Low-Resource Indian Languages
Popis výsledku anglicky
This paper presents the resources and benchmarks developed for keyword search (KWS) in spoken audio from six low-resource Indian languages (from two families), namely Gujarati, Hindi, Marathi, Odia, Tamil, and Telugu. The current work on constructing keywords and building benchmark KWS systems is inspired by the popular IARPA Babel program and the subsequent works on low-resource KWS. The keywords are constructed by taking into account their properties i.e., occurrence, length, and average confusability; and their effects on the evaluation metric - the term-weighted value (TWV).We make use of freely available speech datasets, and reprocess them to create resources for KWS, thereby adding value to the existing speech resources. Four ASR-based KWS systems are built, and their performance is analyzed across the three keyword properties on all the six languages. The prepared keywords and other related resources to replicate our experiments are made available for the public.We believe that the analysis and guidelines provided in this paper will not only help the research community, but also practitioners and engineers to easily create KWS resources for newer languages, datasets, and scenarios.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
34789-34799
Kód UT WoS článku
000778878900001
EID výsledku v databázi Scopus
2-s2.0-85127473918