Towards Deep Learning-based 6D Bin Pose Estimation in 3D Scans
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU147766" target="_blank" >RIV/00216305:26230/22:PU147766 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scitepress.org/Link.aspx?doi=10.5220/0010878200003124" target="_blank" >https://www.scitepress.org/Link.aspx?doi=10.5220/0010878200003124</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0010878200003124" target="_blank" >10.5220/0010878200003124</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Deep Learning-based 6D Bin Pose Estimation in 3D Scans
Popis výsledku v původním jazyce
An automated robotic system needs to be as robust as possible and fail-safe in general while having relatively high precision and repeatability. Although deep learning-based methods are becoming research standard on how to approach 3D scan and image processing tasks, the industry standard for processing this data is still analytically-based. Our paper claims that analytical methods are less robust and harder for testing, updating, and maintaining. This paper focuses on a specific task of 6D pose estimation of a bin in 3D scans. Therefore, we present a high-quality dataset composed of synthetic data and real scans captured by a structured-light scanner with precise annotations. Additionally, we propose two different methods for 6D bin pose estimation, an analytical method as the industrial standard and a baseline data-driven method. Both approaches are cross-evaluated, and our experiments show that augmenting the training on real scans with synthetic data improves our proposed data-driven neural model. This position paper is preliminary, as proposed methods are trained and evaluated on a relatively small initial dataset which we plan to extend in the future.
Název v anglickém jazyce
Towards Deep Learning-based 6D Bin Pose Estimation in 3D Scans
Popis výsledku anglicky
An automated robotic system needs to be as robust as possible and fail-safe in general while having relatively high precision and repeatability. Although deep learning-based methods are becoming research standard on how to approach 3D scan and image processing tasks, the industry standard for processing this data is still analytically-based. Our paper claims that analytical methods are less robust and harder for testing, updating, and maintaining. This paper focuses on a specific task of 6D pose estimation of a bin in 3D scans. Therefore, we present a high-quality dataset composed of synthetic data and real scans captured by a structured-light scanner with precise annotations. Additionally, we propose two different methods for 6D bin pose estimation, an analytical method as the industrial standard and a baseline data-driven method. Both approaches are cross-evaluated, and our experiments show that augmenting the training on real scans with synthetic data improves our proposed data-driven neural model. This position paper is preliminary, as proposed methods are trained and evaluated on a relatively small initial dataset which we plan to extend in the future.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4 VISAPP: VISAPP
ISBN
978-989-758-555-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
545-552
Název nakladatele
SciTePress - Science and Technology Publications
Místo vydání
Setubal
Místo konání akce
Online
Datum konání akce
6. 2. 2022
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000777569400058