Generating Synthetic Depth Image Dataset for Industrial Applications of Hand Localization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250425" target="_blank" >RIV/61989100:27230/22:10250425 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9893133/authors#authors" target="_blank" >https://ieeexplore.ieee.org/document/9893133/authors#authors</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3206948" target="_blank" >10.1109/ACCESS.2022.3206948</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generating Synthetic Depth Image Dataset for Industrial Applications of Hand Localization
Popis výsledku v původním jazyce
In this paper, we focus on the problem of applying domain randomization to produce synthetic datasets for training depth image segmentation models for the task of hand localization. We provide new synthetic datasets for industrial environments suitable for various hand tracking applications, as well as ready-to-use pre-trained models. The presented datasets are analyzed to evaluate the characteristics of these datasets that affect the generalizability of the trained models, and recommendations are given for adapting the simulation environment to achieve satisfactory results when creating datasets for specialized applications. Our approach is not limited by the shortcomings of standard analytical methods, such as color, specific gestures, or hand orientation. The models in this paper were trained solely on a synthetic dataset and were never trained on real camera images; nevertheless, we demonstrate that our most diverse datasets allow the models to achieve up to 90% accuracy. The proposed hand localization system is designed for industrial applications where the operator shares the workspace with the robot.
Název v anglickém jazyce
Generating Synthetic Depth Image Dataset for Industrial Applications of Hand Localization
Popis výsledku anglicky
In this paper, we focus on the problem of applying domain randomization to produce synthetic datasets for training depth image segmentation models for the task of hand localization. We provide new synthetic datasets for industrial environments suitable for various hand tracking applications, as well as ready-to-use pre-trained models. The presented datasets are analyzed to evaluate the characteristics of these datasets that affect the generalizability of the trained models, and recommendations are given for adapting the simulation environment to achieve satisfactory results when creating datasets for specialized applications. Our approach is not limited by the shortcomings of standard analytical methods, such as color, specific gestures, or hand orientation. The models in this paper were trained solely on a synthetic dataset and were never trained on real camera images; nevertheless, we demonstrate that our most diverse datasets allow the models to achieve up to 90% accuracy. The proposed hand localization system is designed for industrial applications where the operator shares the workspace with the robot.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: Platforma pro výzkum orientovaný na Průmysl 4.0 a robotiku v ostravské aglomeraci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
10
Číslo periodika v rámci svazku
10/2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
99734-99744
Kód UT WoS článku
000861358100001
EID výsledku v databázi Scopus
2-s2.0-85139396288