Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Generating Synthetic Depth Image Dataset for Industrial Applications of Hand Localization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250425" target="_blank" >RIV/61989100:27230/22:10250425 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9893133/authors#authors" target="_blank" >https://ieeexplore.ieee.org/document/9893133/authors#authors</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2022.3206948" target="_blank" >10.1109/ACCESS.2022.3206948</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Generating Synthetic Depth Image Dataset for Industrial Applications of Hand Localization

  • Popis výsledku v původním jazyce

    In this paper, we focus on the problem of applying domain randomization to produce synthetic datasets for training depth image segmentation models for the task of hand localization. We provide new synthetic datasets for industrial environments suitable for various hand tracking applications, as well as ready-to-use pre-trained models. The presented datasets are analyzed to evaluate the characteristics of these datasets that affect the generalizability of the trained models, and recommendations are given for adapting the simulation environment to achieve satisfactory results when creating datasets for specialized applications. Our approach is not limited by the shortcomings of standard analytical methods, such as color, specific gestures, or hand orientation. The models in this paper were trained solely on a synthetic dataset and were never trained on real camera images; nevertheless, we demonstrate that our most diverse datasets allow the models to achieve up to 90% accuracy. The proposed hand localization system is designed for industrial applications where the operator shares the workspace with the robot.

  • Název v anglickém jazyce

    Generating Synthetic Depth Image Dataset for Industrial Applications of Hand Localization

  • Popis výsledku anglicky

    In this paper, we focus on the problem of applying domain randomization to produce synthetic datasets for training depth image segmentation models for the task of hand localization. We provide new synthetic datasets for industrial environments suitable for various hand tracking applications, as well as ready-to-use pre-trained models. The presented datasets are analyzed to evaluate the characteristics of these datasets that affect the generalizability of the trained models, and recommendations are given for adapting the simulation environment to achieve satisfactory results when creating datasets for specialized applications. Our approach is not limited by the shortcomings of standard analytical methods, such as color, specific gestures, or hand orientation. The models in this paper were trained solely on a synthetic dataset and were never trained on real camera images; nevertheless, we demonstrate that our most diverse datasets allow the models to achieve up to 90% accuracy. The proposed hand localization system is designed for industrial applications where the operator shares the workspace with the robot.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: Platforma pro výzkum orientovaný na Průmysl 4.0 a robotiku v ostravské aglomeraci</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    10/2022

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    99734-99744

  • Kód UT WoS článku

    000861358100001

  • EID výsledku v databázi Scopus

    2-s2.0-85139396288