IDIAPers @ Causal News Corpus 2022: Efficient Causal Relation Identification Through a Prompt-based Few-shot Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU149354" target="_blank" >RIV/00216305:26230/22:PU149354 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2022.case-1.9/" target="_blank" >https://aclanthology.org/2022.case-1.9/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2022.case-1.9" target="_blank" >10.18653/v1/2022.case-1.9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
IDIAPers @ Causal News Corpus 2022: Efficient Causal Relation Identification Through a Prompt-based Few-shot Approach
Popis výsledku v původním jazyce
In this paper, we describe our participation in the subtask 1 of CASE-2022, Event Causality Identification with Casual News Corpus. We address the Causal Relation Identification (CRI) task by exploiting a set of simple yet complementary techniques for fine-tuning language models (LMs) on a small number of annotated examples (i.e., a few-shot configuration). We follow a prompt-based prediction approach for fine-tuning LMs in which the CRI task is treated as a masked language modeling problem (MLM). This approach allows LMs natively pre-trained on MLM problems to directly generate textual responses to CRI-specific prompts. We compare the performance of this method against ensemble techniques trained on the entire dataset. Our best-performing submission was fine-tuned with only 256 instances per class, 15.7% of the all available data, and yet obtained the second-best precision (0.82), third-best accuracy (0.82), and an F1-score (0.85) very close to what was reported by the winner team (0.86).
Název v anglickém jazyce
IDIAPers @ Causal News Corpus 2022: Efficient Causal Relation Identification Through a Prompt-based Few-shot Approach
Popis výsledku anglicky
In this paper, we describe our participation in the subtask 1 of CASE-2022, Event Causality Identification with Casual News Corpus. We address the Causal Relation Identification (CRI) task by exploiting a set of simple yet complementary techniques for fine-tuning language models (LMs) on a small number of annotated examples (i.e., a few-shot configuration). We follow a prompt-based prediction approach for fine-tuning LMs in which the CRI task is treated as a masked language modeling problem (MLM). This approach allows LMs natively pre-trained on MLM problems to directly generate textual responses to CRI-specific prompts. We compare the performance of this method against ensemble techniques trained on the entire dataset. Our best-performing submission was fine-tuned with only 256 instances per class, 15.7% of the all available data, and yet obtained the second-best precision (0.82), third-best accuracy (0.82), and an F1-score (0.85) very close to what was reported by the winner team (0.86).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2022)
ISBN
978-1-959429-05-0
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
61-69
Název nakladatele
Association for Computational Linguistics
Místo vydání
Abu Dhabi
Místo konání akce
Abu Dhabi
Datum konání akce
7. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—