Correction of AFM data artifacts using a convolutional neural network trained with synthetically generated data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU148195" target="_blank" >RIV/00216305:26230/23:PU148195 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0304399122001851?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0304399122001851?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ultramic.2022.113666" target="_blank" >10.1016/j.ultramic.2022.113666</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Correction of AFM data artifacts using a convolutional neural network trained with synthetically generated data
Popis výsledku v původním jazyce
AFM microscopy from its nature produces outputs with certain distortions, inaccuracies and errors given by its physical principle. These distortions are more or less well studied and documented. Based on the nature of the individual distortions, different reconstruction and compensation filters have been developed to post-process the scanned images. This article presents an approach based on machine learning - the involved convolutional neural network learns from pairs of distorted images and the ground truth image and then it is able to process pairs of images of interest and produce a filtered image with the artifacts removed or at least suppressed. What is important in our approach is that the neural network is trained purely on synthetic data generated by a simulator of the inputs, based on an analytical description of the physical phenomena causing the distortions. The generator produces training samples involving various combinations of the distortions. The resulting trained network seems to be able to autonomously recognize the distortions present in the testing image (no knowledge of the distortions or any other human knowledge is provided at the test time) and apply the appropriate corrections. The experimental results show that not only is the new approach better or at least on par with conventional post-processing methods, but more importantly, it does not require any operator's input and works completely autonomously. The source codes of the training set generator and of the convolutional neural net model are made public, as well as an evaluation dataset of real captured AFM images.
Název v anglickém jazyce
Correction of AFM data artifacts using a convolutional neural network trained with synthetically generated data
Popis výsledku anglicky
AFM microscopy from its nature produces outputs with certain distortions, inaccuracies and errors given by its physical principle. These distortions are more or less well studied and documented. Based on the nature of the individual distortions, different reconstruction and compensation filters have been developed to post-process the scanned images. This article presents an approach based on machine learning - the involved convolutional neural network learns from pairs of distorted images and the ground truth image and then it is able to process pairs of images of interest and produce a filtered image with the artifacts removed or at least suppressed. What is important in our approach is that the neural network is trained purely on synthetic data generated by a simulator of the inputs, based on an analytical description of the physical phenomena causing the distortions. The generator produces training samples involving various combinations of the distortions. The resulting trained network seems to be able to autonomously recognize the distortions present in the testing image (no knowledge of the distortions or any other human knowledge is provided at the test time) and apply the appropriate corrections. The experimental results show that not only is the new approach better or at least on par with conventional post-processing methods, but more importantly, it does not require any operator's input and works completely autonomously. The source codes of the training set generator and of the convolutional neural net model are made public, as well as an evaluation dataset of real captured AFM images.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/FW01010183" target="_blank" >FW01010183: Nová generace integrace mikroskopie atomárních sil a elektronové mikroskopie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ultramicroscopy
ISSN
0304-3991
e-ISSN
1879-2723
Svazek periodika
246
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
113666-113666
Kód UT WoS článku
000917791400001
EID výsledku v databázi Scopus
2-s2.0-85145353263