Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Correction of AFM data artifacts using a convolutional neural network trained with synthetically generated data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU148195" target="_blank" >RIV/00216305:26230/23:PU148195 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0304399122001851?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0304399122001851?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ultramic.2022.113666" target="_blank" >10.1016/j.ultramic.2022.113666</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Correction of AFM data artifacts using a convolutional neural network trained with synthetically generated data

  • Popis výsledku v původním jazyce

    AFM microscopy from its nature produces outputs with certain distortions, inaccuracies and errors given by its physical principle. These distortions are more or less well studied and documented. Based on the nature of the individual distortions, different reconstruction and compensation filters have been developed to post-process the scanned images. This article presents an approach based on machine learning - the involved convolutional neural network learns from pairs of distorted images and the ground truth image and then it is able to process pairs of images of interest and produce a filtered image with the artifacts removed or at least suppressed. What is important in our approach is that the neural network is trained purely on synthetic data generated by a simulator of the inputs, based on an analytical description of the physical phenomena causing the distortions. The generator produces training samples involving various combinations of the distortions. The resulting trained network seems to be able to autonomously recognize the distortions present in the testing image (no knowledge of the distortions or any other human knowledge is provided at the test time) and apply the appropriate corrections. The experimental results show that not only is the new approach better or at least on par with conventional post-processing methods, but more importantly, it does not require any operator's input and works completely autonomously. The source codes of the training set generator and of the convolutional neural net model are made public, as well as an evaluation dataset of real captured AFM images.

  • Název v anglickém jazyce

    Correction of AFM data artifacts using a convolutional neural network trained with synthetically generated data

  • Popis výsledku anglicky

    AFM microscopy from its nature produces outputs with certain distortions, inaccuracies and errors given by its physical principle. These distortions are more or less well studied and documented. Based on the nature of the individual distortions, different reconstruction and compensation filters have been developed to post-process the scanned images. This article presents an approach based on machine learning - the involved convolutional neural network learns from pairs of distorted images and the ground truth image and then it is able to process pairs of images of interest and produce a filtered image with the artifacts removed or at least suppressed. What is important in our approach is that the neural network is trained purely on synthetic data generated by a simulator of the inputs, based on an analytical description of the physical phenomena causing the distortions. The generator produces training samples involving various combinations of the distortions. The resulting trained network seems to be able to autonomously recognize the distortions present in the testing image (no knowledge of the distortions or any other human knowledge is provided at the test time) and apply the appropriate corrections. The experimental results show that not only is the new approach better or at least on par with conventional post-processing methods, but more importantly, it does not require any operator's input and works completely autonomously. The source codes of the training set generator and of the convolutional neural net model are made public, as well as an evaluation dataset of real captured AFM images.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FW01010183" target="_blank" >FW01010183: Nová generace integrace mikroskopie atomárních sil a elektronové mikroskopie</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Ultramicroscopy

  • ISSN

    0304-3991

  • e-ISSN

    1879-2723

  • Svazek periodika

    246

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    113666-113666

  • Kód UT WoS článku

    000917791400001

  • EID výsledku v databázi Scopus

    2-s2.0-85145353263