Visual Data Simulation for Deep Learning in Robot Manipulation Tasks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332335" target="_blank" >RIV/68407700:21230/19:00332335 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/19:00332335
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-14984-0_29" target="_blank" >https://doi.org/10.1007/978-3-030-14984-0_29</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-14984-0_29" target="_blank" >10.1007/978-3-030-14984-0_29</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Visual Data Simulation for Deep Learning in Robot Manipulation Tasks
Popis výsledku v původním jazyce
This paper introduces the usage of simulated images for training convolutional neural networks for object recognition and localization in the task of random bin picking. For machine learning applications, a limited amount of real world image data that can be captured and labeled for training and testing purposes is a big issue. In this paper, we focus on the use of realistic simulation of image data for training convolutional neural networks to be able to estimate the pose of an object. We can systematically generate varying camera viewpoint datasets with a various pose of an object and lighting conditions. After successful training and testing the neural network, we compare the performance of network trained on simulated images and images from a real camera capturing the physical object. The usage of the simulated data can speed up the complex and time-consuming task of gathering training data as well as increase robustness of object recognition by generating a bigger amount of data.
Název v anglickém jazyce
Visual Data Simulation for Deep Learning in Robot Manipulation Tasks
Popis výsledku anglicky
This paper introduces the usage of simulated images for training convolutional neural networks for object recognition and localization in the task of random bin picking. For machine learning applications, a limited amount of real world image data that can be captured and labeled for training and testing purposes is a big issue. In this paper, we focus on the use of realistic simulation of image data for training convolutional neural networks to be able to estimate the pose of an object. We can systematically generate varying camera viewpoint datasets with a various pose of an object and lighting conditions. After successful training and testing the neural network, we compare the performance of network trained on simulated images and images from a real camera capturing the physical object. The usage of the simulated data can speed up the complex and time-consuming task of gathering training data as well as increase robustness of object recognition by generating a bigger amount of data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Modelling and Simulation for Autonomous Systems (MESAS 2018)
ISBN
978-3-030-14983-3
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
402-411
Název nakladatele
Springer International Publishing AG
Místo vydání
Cham
Místo konání akce
Praha
Datum konání akce
17. 10. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—