Simulation Environment for Neural Network Dataset Generation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10251227" target="_blank" >RIV/61989100:27230/22:10251227 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-98260-7_20" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-98260-7_20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-98260-7_20" target="_blank" >10.1007/978-3-030-98260-7_20</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simulation Environment for Neural Network Dataset Generation
Popis výsledku v původním jazyce
We present a simulation setup in the robot simulation software CoppeliaSim which is used for a synthetic dataset generation for training the neural network. In the simulator we can generate either color and depth images which can be tuned according to the real cameras mounted to the robot or robotic workplace. Vision sensors capture the simulated scene which contains different environment features, obstacles and objects of interest which can be labeled automatically with another filtering vision sensor. Except static environment which can be imported in case of known setup or generated based on height-field or simple objects. We can simulate randomly or with a specific pose oriented and positioned objects which may appear in the field of view of the robot. As an output the system produce RGB or depth information which is stored as a RGB or a gray-scale image or a combined RGBA image including the RGB data extended by depth data stored in the alpha channel. Second product of the system is a label describing different detectable classes for the neural network. The simulator is able to generate large datasets in a short period of time and produce a highly customized learning base for the neural network.
Název v anglickém jazyce
Simulation Environment for Neural Network Dataset Generation
Popis výsledku anglicky
We present a simulation setup in the robot simulation software CoppeliaSim which is used for a synthetic dataset generation for training the neural network. In the simulator we can generate either color and depth images which can be tuned according to the real cameras mounted to the robot or robotic workplace. Vision sensors capture the simulated scene which contains different environment features, obstacles and objects of interest which can be labeled automatically with another filtering vision sensor. Except static environment which can be imported in case of known setup or generated based on height-field or simple objects. We can simulate randomly or with a specific pose oriented and positioned objects which may appear in the field of view of the robot. As an output the system produce RGB or depth information which is stored as a RGB or a gray-scale image or a combined RGBA image including the RGB data extended by depth data stored in the alpha channel. Second product of the system is a label describing different detectable classes for the neural network. The simulator is able to generate large datasets in a short period of time and produce a highly customized learning base for the neural network.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: Platforma pro výzkum orientovaný na Průmysl 4.0 a robotiku v ostravské aglomeraci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science. Volume 13207
ISBN
978-3-030-98259-1
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
11
Strana od-do
322-332
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Řím
Datum konání akce
13. 10. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000787774900020