Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predicting Photovoltaic Power Production using High-Uncertainty Weather Forecasts

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149296" target="_blank" >RIV/00216305:26230/23:PU149296 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0306261923003537" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0306261923003537</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apenergy.2023.120989" target="_blank" >10.1016/j.apenergy.2023.120989</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predicting Photovoltaic Power Production using High-Uncertainty Weather Forecasts

  • Popis výsledku v původním jazyce

    A growing interest in renewable power increases its impact on the energy grid, posing significant challenges to reliability, stability, and planning. Although the use of weather-based prediction methods helps relieve these issues, their real-world accuracy is limited by the errors inherent to the weather forecast data used during the inference. To help resolve this limitation, we introduce the SolarPredictor model. It uses a hybrid convolutional architecture combining residual connections with multi-scale spatiotemporal analysis, predicting solar power from publicly available high-uncertainty weather forecasts. Further, to train the model, we present the SolarDB dataset comprising one year of power production data for 16 solar power plants. Crucially, we include weather forecasts with seven days of hourly history, allowing our model to anticipate errors in the meteorological features. In contrast to previous work, we evaluate the prediction accuracy using widely available low-precision weather forecasts, accurately reflecting the real-world performance. Comparing against 17 other techniques, we show the superior performance of our approach, reaching an average RRMSE of 6.15 for 1-day, 8.54 for 3-day, and 8.89 for 7-day predictions on the SolarDB dataset. Finally, we analyze the effects of weather forecast uncertainty on the prediction accuracy, showing a 23 % performance gap compared to using zero-error weather. Data and additional resources are available at cphoto.fit.vutbr.cz/solar.

  • Název v anglickém jazyce

    Predicting Photovoltaic Power Production using High-Uncertainty Weather Forecasts

  • Popis výsledku anglicky

    A growing interest in renewable power increases its impact on the energy grid, posing significant challenges to reliability, stability, and planning. Although the use of weather-based prediction methods helps relieve these issues, their real-world accuracy is limited by the errors inherent to the weather forecast data used during the inference. To help resolve this limitation, we introduce the SolarPredictor model. It uses a hybrid convolutional architecture combining residual connections with multi-scale spatiotemporal analysis, predicting solar power from publicly available high-uncertainty weather forecasts. Further, to train the model, we present the SolarDB dataset comprising one year of power production data for 16 solar power plants. Crucially, we include weather forecasts with seven days of hourly history, allowing our model to anticipate errors in the meteorological features. In contrast to previous work, we evaluate the prediction accuracy using widely available low-precision weather forecasts, accurately reflecting the real-world performance. Comparing against 17 other techniques, we show the superior performance of our approach, reaching an average RRMSE of 6.15 for 1-day, 8.54 for 3-day, and 8.89 for 7-day predictions on the SolarDB dataset. Finally, we analyze the effects of weather forecast uncertainty on the prediction accuracy, showing a 23 % performance gap compared to using zero-error weather. Data and additional resources are available at cphoto.fit.vutbr.cz/solar.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    APPLIED ENERGY

  • ISSN

    0306-2619

  • e-ISSN

    1872-9118

  • Svazek periodika

    2023

  • Číslo periodika v rámci svazku

    339

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    120989-121004

  • Kód UT WoS článku

    000965062000001

  • EID výsledku v databázi Scopus

    2-s2.0-85151456461