Search for Predictors of Inflation Using VAR and BVAR: The Case of Czech Republic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F14%3A10312080" target="_blank" >RIV/00216208:11230/14:10312080 - isvavai.cz</a>
Výsledek na webu
<a href="http://ces.utia.cas.cz/bulletin/index.php/bulletin/article/view/207" target="_blank" >http://ces.utia.cas.cz/bulletin/index.php/bulletin/article/view/207</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Search for Predictors of Inflation Using VAR and BVAR: The Case of Czech Republic
Popis výsledku v původním jazyce
Forecasting inflation is generally considered a challenging task as forecasters face fundamental uncertainty about the proper selection of variables driving inflation dynamics. In this paper, we investigate the forecasting performance of variables representing economic activity, monetary policy and survey data within VAR and BVAR models. We propose a scoring algorithm to evaluate their forecasting performance based on various criteria such as the mean square error, the mean absolute error and the Diebold-Mariano test. A one-year horizon is considered for the forecasts and they are constructed by the chain rule using monthly data. We also determine the forecast accuracy on sub-periods, showing that in a low volatility periods the forecast accuracy can be significantly improved by selecting models using square-root errors. Our results suggest that the survey data have strong predictive power, especially when accompanied by a broad money measure. The survey data outperform also the indica
Název v anglickém jazyce
Search for Predictors of Inflation Using VAR and BVAR: The Case of Czech Republic
Popis výsledku anglicky
Forecasting inflation is generally considered a challenging task as forecasters face fundamental uncertainty about the proper selection of variables driving inflation dynamics. In this paper, we investigate the forecasting performance of variables representing economic activity, monetary policy and survey data within VAR and BVAR models. We propose a scoring algorithm to evaluate their forecasting performance based on various criteria such as the mean square error, the mean absolute error and the Diebold-Mariano test. A one-year horizon is considered for the forecasts and they are constructed by the chain rule using monthly data. We also determine the forecast accuracy on sub-periods, showing that in a low volatility periods the forecast accuracy can be significantly improved by selecting models using square-root errors. Our results suggest that the survey data have strong predictive power, especially when accompanied by a broad money measure. The survey data outperform also the indica
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bulletin of the Czech Econometric Society
ISSN
2336-2782
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
33
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
37
Strana od-do
22-58
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—