Survey expectations and learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11640%2F21%3A00544621" target="_blank" >RIV/00216208:11640/21:00544621 - isvavai.cz</a>
Výsledek na webu
<a href="https://rjmf.econs.online/upload/iblock/646/Survey_Expectations_and_Learning.pdf" target="_blank" >https://rjmf.econs.online/upload/iblock/646/Survey_Expectations_and_Learning.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.31477/rjmf.202102.03" target="_blank" >10.31477/rjmf.202102.03</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Survey expectations and learning
Popis výsledku v původním jazyce
In this paper, we evaluate a model that describes real-time inflation data together with the inflation expectations measured by the Survey of Professional Forecasters (SPF). We work with a second-order autoregressive model in which the agents learn over time the intercept and persistence coefficients based on real-time data. To model the process of revisions in real time data, we allow for news and noise disturbances. In contrast to the usual time-varying parameter vector autoregression, we use non-linear Kalman filter techniques to estimate the time-varying coefficients of the underlying inflation process. We identify systematic changes in the persistence of the inflation process and in the long-run expected inflation rate that are implied by the model. The inflation forecasts implied by the model are then compared with the SPF forecasts. As we cannot reject the hypothesis that the SPF forecasts are produced based on our model, we re-estimate the model using Survey nowcasts and forecasts as additional observables. This augmented model does not change the nature and magnitude of the time variation in the coefficients of the autoregressive model, but it does help to reduce the uncertainty in the estimates. Overall, the estimated time-variation confirms our results on the perceived inflation process present in estimated DSGE models with learning.
Název v anglickém jazyce
Survey expectations and learning
Popis výsledku anglicky
In this paper, we evaluate a model that describes real-time inflation data together with the inflation expectations measured by the Survey of Professional Forecasters (SPF). We work with a second-order autoregressive model in which the agents learn over time the intercept and persistence coefficients based on real-time data. To model the process of revisions in real time data, we allow for news and noise disturbances. In contrast to the usual time-varying parameter vector autoregression, we use non-linear Kalman filter techniques to estimate the time-varying coefficients of the underlying inflation process. We identify systematic changes in the persistence of the inflation process and in the long-run expected inflation rate that are implied by the model. The inflation forecasts implied by the model are then compared with the SPF forecasts. As we cannot reject the hypothesis that the SPF forecasts are produced based on our model, we re-estimate the model using Survey nowcasts and forecasts as additional observables. This augmented model does not change the nature and magnitude of the time variation in the coefficients of the autoregressive model, but it does help to reduce the uncertainty in the estimates. Overall, the estimated time-variation confirms our results on the perceived inflation process present in estimated DSGE models with learning.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/GCP402%2F11%2FJ018" target="_blank" >GCP402/11/J018: Komparativní přístup k makroekonomickému modelování a analýze politiky: uvedení procesu adaptivního učení</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Russian Journal of Money and Finance
ISSN
0130-3090
e-ISSN
—
Svazek periodika
80
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
RU - Ruská federace
Počet stran výsledku
25
Strana od-do
3-27
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—