Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Professional survey forecasts and expectations in DSGE models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985998%3A_____%2F23%3A00578223" target="_blank" >RIV/67985998:_____/23:00578223 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.cerge-ei.cz/pdf/wp/Wp766.pdf" target="_blank" >https://www.cerge-ei.cz/pdf/wp/Wp766.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Professional survey forecasts and expectations in DSGE models

  • Popis výsledku v původním jazyce

    In this paper, we demonstrate the usefulness of survey data for macroeconomic analysis and propose a strategy to integrate and efficiently utilize information from surveys in the DSGE setup. We extend the set of observable variables to include the data on consumption, investment, output, and inflation expectations, as measured by the Survey of Professional Forecasters (SPF). By doing so, we aim to discipline the dynamics of model-based expectations and evaluate alternative belief models. Our approach to exploit the timely information from surveys is based on re-specification of structural shocks into persistent and transitory components. Due to the SPF, we are able to improve identification of fundamental shocks and predictive power of the model by separating the sources of low and high frequency volatility. Furthermore, we show that models with an imperfectly-rational expectation formation mechanism based on Adaptive Learning (AL) can reduce important limitations implied by the Rational Expectation (RE) hypothesis. More specifically, our models based on belief updating can better capture macroeconomic trend shifts and, as a result, achieve superior long-term predictions. In addition, the AL mechanism can produce realistic time variation in the transmission of shocks and perceived macro-economic volatility, which allows the model to better explain the investment dynamics. Finally, AL models, which relax the RE constraint of internal consistency between the agents’ and model forecasts, can reproduce the main features of agents’ predictions in line with SPF evidence and, at the same time, can generate improved model forecasts, thus diminishing possible inefficiencies present in surveys.

  • Název v anglickém jazyce

    Professional survey forecasts and expectations in DSGE models

  • Popis výsledku anglicky

    In this paper, we demonstrate the usefulness of survey data for macroeconomic analysis and propose a strategy to integrate and efficiently utilize information from surveys in the DSGE setup. We extend the set of observable variables to include the data on consumption, investment, output, and inflation expectations, as measured by the Survey of Professional Forecasters (SPF). By doing so, we aim to discipline the dynamics of model-based expectations and evaluate alternative belief models. Our approach to exploit the timely information from surveys is based on re-specification of structural shocks into persistent and transitory components. Due to the SPF, we are able to improve identification of fundamental shocks and predictive power of the model by separating the sources of low and high frequency volatility. Furthermore, we show that models with an imperfectly-rational expectation formation mechanism based on Adaptive Learning (AL) can reduce important limitations implied by the Rational Expectation (RE) hypothesis. More specifically, our models based on belief updating can better capture macroeconomic trend shifts and, as a result, achieve superior long-term predictions. In addition, the AL mechanism can produce realistic time variation in the transmission of shocks and perceived macro-economic volatility, which allows the model to better explain the investment dynamics. Finally, AL models, which relax the RE constraint of internal consistency between the agents’ and model forecasts, can reproduce the main features of agents’ predictions in line with SPF evidence and, at the same time, can generate improved model forecasts, thus diminishing possible inefficiencies present in surveys.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    50202 - Applied Economics, Econometrics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů