Deepfakes as a threat to a speaker and facial recognition: an overview of tools and attack vectors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149350" target="_blank" >RIV/00216305:26230/23:PU149350 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405844023022971" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405844023022971</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.heliyon.2023.e15090" target="_blank" >10.1016/j.heliyon.2023.e15090</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deepfakes as a threat to a speaker and facial recognition: an overview of tools and attack vectors
Popis výsledku v původním jazyce
Deepfakes present an emerging threat in cyberspace. Recent developments in machine learning make deepfakes highly believable, and very difficult to differentiate between what is real and what is fake. Not only humans but also machines struggle to identify deepfakes. Current speaker and facial recognition systems might be easily fooled by carefully prepared synthetic media - deepfakes. We provide a detailed overview of the state-of-the-art deepfake creation and detection methods for selected visual and audio domains. In contrast to other deepfake surveys, we focus on the threats that deepfakes represent to biometrics systems (e.g., spoofing). We discuss both facial and speechdeepfakes, and for each domain, we define deepfake categories and their differences. For each deepfake category, we provide an overview of available tools for creation, datasets, and detection methods. Our main contribution is a definition of attack vectors concerning the differences between categories and reported real-world attacks to evaluate each category's threats to selected categories of biometrics systems.
Název v anglickém jazyce
Deepfakes as a threat to a speaker and facial recognition: an overview of tools and attack vectors
Popis výsledku anglicky
Deepfakes present an emerging threat in cyberspace. Recent developments in machine learning make deepfakes highly believable, and very difficult to differentiate between what is real and what is fake. Not only humans but also machines struggle to identify deepfakes. Current speaker and facial recognition systems might be easily fooled by carefully prepared synthetic media - deepfakes. We provide a detailed overview of the state-of-the-art deepfake creation and detection methods for selected visual and audio domains. In contrast to other deepfake surveys, we focus on the threats that deepfakes represent to biometrics systems (e.g., spoofing). We discuss both facial and speechdeepfakes, and for each domain, we define deepfake categories and their differences. For each deepfake category, we provide an overview of available tools for creation, datasets, and detection methods. Our main contribution is a definition of attack vectors concerning the differences between categories and reported real-world attacks to evaluate each category's threats to selected categories of biometrics systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Heliyon
ISSN
2405-8440
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
33
Strana od-do
1-33
Kód UT WoS článku
000998660600001
EID výsledku v databázi Scopus
2-s2.0-85151552922