A Weighted Gaussian Kernel Least Mean Square Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149352" target="_blank" >RIV/00216305:26230/23:PU149352 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00034-023-02337-y" target="_blank" >https://link.springer.com/article/10.1007/s00034-023-02337-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00034-023-02337-y" target="_blank" >10.1007/s00034-023-02337-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Weighted Gaussian Kernel Least Mean Square Algorithm
Popis výsledku v původním jazyce
In this work, a novel weighted kernel least mean square (WKLMS) algorithm is proposed by introducing a weighted Gaussian kernel. The learning behavior of the WKLMS algorithm is studied. Mean square error (MSE) analysis shows that the WKLMS algorithm outperforms both the least mean square (LMS) and KLMS algorithms in terms of transient state as well as steady-state responses. We study the effect of the weighted Gaussian kernel on the associated kernel matrix, its eigenvalue spread and distribution, and show how these parameters affect the convergence behavior of the algorithm. Both of the transient and steady-state mean-square-error (MSE) behaviors of the WKLMS algorithm are studied, and a stability bound is derived. For a non-stationary environment, tracking analysis for a correlated random walk channel is presented. We also prove that the steady-state excess MSE (EMSE) of the WKLMS is Schur convex function of the weight elements in its kernel weight matrix and hence it follows the majorization of the kernel weight elements. This helps to decide which kernel weight matrix can provide better MSE performance. Simulations results are provided to contrast the performance of the proposed WKLMS with those of its counterparts KLMS and LMS algorithms. The derived analytical results of the proposed WKLMS algorithm are also validated via simulations for various step-size values.
Název v anglickém jazyce
A Weighted Gaussian Kernel Least Mean Square Algorithm
Popis výsledku anglicky
In this work, a novel weighted kernel least mean square (WKLMS) algorithm is proposed by introducing a weighted Gaussian kernel. The learning behavior of the WKLMS algorithm is studied. Mean square error (MSE) analysis shows that the WKLMS algorithm outperforms both the least mean square (LMS) and KLMS algorithms in terms of transient state as well as steady-state responses. We study the effect of the weighted Gaussian kernel on the associated kernel matrix, its eigenvalue spread and distribution, and show how these parameters affect the convergence behavior of the algorithm. Both of the transient and steady-state mean-square-error (MSE) behaviors of the WKLMS algorithm are studied, and a stability bound is derived. For a non-stationary environment, tracking analysis for a correlated random walk channel is presented. We also prove that the steady-state excess MSE (EMSE) of the WKLMS is Schur convex function of the weight elements in its kernel weight matrix and hence it follows the majorization of the kernel weight elements. This helps to decide which kernel weight matrix can provide better MSE performance. Simulations results are provided to contrast the performance of the proposed WKLMS with those of its counterparts KLMS and LMS algorithms. The derived analytical results of the proposed WKLMS algorithm are also validated via simulations for various step-size values.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CIRCUITS SYSTEMS AND SIGNAL PROCESSING
ISSN
0278-081X
e-ISSN
1531-5878
Svazek periodika
42
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
5267-5288
Kód UT WoS článku
000969185100004
EID výsledku v databázi Scopus
2-s2.0-85152403462