Computational possibilities and properties of robustified version of the mixed Least Squares - Total Least Squares estimator
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00199819" target="_blank" >RIV/68407700:21340/12:00199819 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational possibilities and properties of robustified version of the mixed Least Squares - Total Least Squares estimator
Popis výsledku v původním jazyce
Classical robust regression estimators, such as Least Trimmed Squares (LTS), are not consistent when both independent and some dependent variables are considered to be measured with a random error. One way how to cope with this problem is to use the robustified version of Mixed Least Squares - Total Least Squares (LS-TLS). Mixed Least Trimmed Squares - Total Least Trimmed Squares (LTS-TLTS) based on trimming and mixed Least Weighted Squares - Total Least Weighted Squares (LWS-TLWS) based on the idea ofdownweighting the influential points, are proposed. The existence and uniqueness of the solution, breakdown point, consistency and another properties of these estimators are discussed. Different approaches of calculation, such as Branch-and-Bound algorithm, elemental concentration algorithm and simulated annealing, are described and their performances are shown on sets of benchmark instances.
Název v anglickém jazyce
Computational possibilities and properties of robustified version of the mixed Least Squares - Total Least Squares estimator
Popis výsledku anglicky
Classical robust regression estimators, such as Least Trimmed Squares (LTS), are not consistent when both independent and some dependent variables are considered to be measured with a random error. One way how to cope with this problem is to use the robustified version of Mixed Least Squares - Total Least Squares (LS-TLS). Mixed Least Trimmed Squares - Total Least Trimmed Squares (LTS-TLTS) based on trimming and mixed Least Weighted Squares - Total Least Weighted Squares (LWS-TLWS) based on the idea ofdownweighting the influential points, are proposed. The existence and uniqueness of the solution, breakdown point, consistency and another properties of these estimators are discussed. Different approaches of calculation, such as Branch-and-Bound algorithm, elemental concentration algorithm and simulated annealing, are described and their performances are shown on sets of benchmark instances.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů