Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep learning for predictive alerting and cyber-attack mitigation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149370" target="_blank" >RIV/00216305:26230/23:PU149370 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.fit.vut.cz/research/publication/12926/" target="_blank" >https://www.fit.vut.cz/research/publication/12926/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CCWC57344.2023.10099209" target="_blank" >10.1109/CCWC57344.2023.10099209</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep learning for predictive alerting and cyber-attack mitigation

  • Popis výsledku v původním jazyce

    The successful security management of ICT systems and services is essential for an effective cyber security posture. The main objective is to minimize and control the damage caused by cyber-attacks and incidents, to provide effective response and recovery, and to invest efforts in preventing future cyber incidents. To achieve this objective, cyber threat intelligence (CTI) is widely applied, as it is considered a crucial mechanism to proactively defend against modern and dynamically evolving cyber threats and attacks. However, there are multiple challenges in the field of CTI, as there is an enormous amount of unstructured threats data in cyberspace that needs to be collected, classified, analyzed, and shared between states, organizations, or companies. Facing this challenge, data mining techniques and machine learning algorithms are essential for providing meaningful CTI information due to their ability to extract indistinct and hidden patterns in the data. Based on data mining techniques and machine learning algorithms' potential for successfully implementing cyber threat intelligence services, this paper develops an efficient predictive alerting model in a threat intelligence engine using the Deep Residual Network (DRN) model. Further, the main goal is to compare the performance of the DRN model with other machine learning models such as Sequential Rule Mining, IntruDTree, ScaleNet, etc. According to our experimental results, the DRN outperformed other tested machine learning models by achieving better results on parameters such as precision, recall, and F-measure. 

  • Název v anglickém jazyce

    Deep learning for predictive alerting and cyber-attack mitigation

  • Popis výsledku anglicky

    The successful security management of ICT systems and services is essential for an effective cyber security posture. The main objective is to minimize and control the damage caused by cyber-attacks and incidents, to provide effective response and recovery, and to invest efforts in preventing future cyber incidents. To achieve this objective, cyber threat intelligence (CTI) is widely applied, as it is considered a crucial mechanism to proactively defend against modern and dynamically evolving cyber threats and attacks. However, there are multiple challenges in the field of CTI, as there is an enormous amount of unstructured threats data in cyberspace that needs to be collected, classified, analyzed, and shared between states, organizations, or companies. Facing this challenge, data mining techniques and machine learning algorithms are essential for providing meaningful CTI information due to their ability to extract indistinct and hidden patterns in the data. Based on data mining techniques and machine learning algorithms' potential for successfully implementing cyber threat intelligence services, this paper develops an efficient predictive alerting model in a threat intelligence engine using the Deep Residual Network (DRN) model. Further, the main goal is to compare the performance of the DRN model with other machine learning models such as Sequential Rule Mining, IntruDTree, ScaleNet, etc. According to our experimental results, the DRN outperformed other tested machine learning models by achieving better results on parameters such as precision, recall, and F-measure. 

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IEEE 13th Annual Computing and Communication Workshop and Conference, CCWC 2023

  • ISBN

    978-3-319-93490-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    476-481

  • Název nakladatele

    IEEE Computer Society

  • Místo vydání

    Las Vegas

  • Místo konání akce

    Virtual

  • Datum konání akce

    8. 3. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000995182600074