Deep learning for predictive alerting and cyber-attack mitigation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149370" target="_blank" >RIV/00216305:26230/23:PU149370 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/12926/" target="_blank" >https://www.fit.vut.cz/research/publication/12926/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CCWC57344.2023.10099209" target="_blank" >10.1109/CCWC57344.2023.10099209</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep learning for predictive alerting and cyber-attack mitigation
Popis výsledku v původním jazyce
The successful security management of ICT systems and services is essential for an effective cyber security posture. The main objective is to minimize and control the damage caused by cyber-attacks and incidents, to provide effective response and recovery, and to invest efforts in preventing future cyber incidents. To achieve this objective, cyber threat intelligence (CTI) is widely applied, as it is considered a crucial mechanism to proactively defend against modern and dynamically evolving cyber threats and attacks. However, there are multiple challenges in the field of CTI, as there is an enormous amount of unstructured threats data in cyberspace that needs to be collected, classified, analyzed, and shared between states, organizations, or companies. Facing this challenge, data mining techniques and machine learning algorithms are essential for providing meaningful CTI information due to their ability to extract indistinct and hidden patterns in the data. Based on data mining techniques and machine learning algorithms' potential for successfully implementing cyber threat intelligence services, this paper develops an efficient predictive alerting model in a threat intelligence engine using the Deep Residual Network (DRN) model. Further, the main goal is to compare the performance of the DRN model with other machine learning models such as Sequential Rule Mining, IntruDTree, ScaleNet, etc. According to our experimental results, the DRN outperformed other tested machine learning models by achieving better results on parameters such as precision, recall, and F-measure.
Název v anglickém jazyce
Deep learning for predictive alerting and cyber-attack mitigation
Popis výsledku anglicky
The successful security management of ICT systems and services is essential for an effective cyber security posture. The main objective is to minimize and control the damage caused by cyber-attacks and incidents, to provide effective response and recovery, and to invest efforts in preventing future cyber incidents. To achieve this objective, cyber threat intelligence (CTI) is widely applied, as it is considered a crucial mechanism to proactively defend against modern and dynamically evolving cyber threats and attacks. However, there are multiple challenges in the field of CTI, as there is an enormous amount of unstructured threats data in cyberspace that needs to be collected, classified, analyzed, and shared between states, organizations, or companies. Facing this challenge, data mining techniques and machine learning algorithms are essential for providing meaningful CTI information due to their ability to extract indistinct and hidden patterns in the data. Based on data mining techniques and machine learning algorithms' potential for successfully implementing cyber threat intelligence services, this paper develops an efficient predictive alerting model in a threat intelligence engine using the Deep Residual Network (DRN) model. Further, the main goal is to compare the performance of the DRN model with other machine learning models such as Sequential Rule Mining, IntruDTree, ScaleNet, etc. According to our experimental results, the DRN outperformed other tested machine learning models by achieving better results on parameters such as precision, recall, and F-measure.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE 13th Annual Computing and Communication Workshop and Conference, CCWC 2023
ISBN
978-3-319-93490-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
476-481
Název nakladatele
IEEE Computer Society
Místo vydání
Las Vegas
Místo konání akce
Virtual
Datum konání akce
8. 3. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000995182600074