Cybersecurity of Sensors on Smart Vehicles: Review of Threats and Solutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F23%3A39921212" target="_blank" >RIV/00216275:25530/23:39921212 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10331330" target="_blank" >https://ieeexplore.ieee.org/document/10331330</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IC2IE60547.2023.10331330" target="_blank" >10.1109/IC2IE60547.2023.10331330</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cybersecurity of Sensors on Smart Vehicles: Review of Threats and Solutions
Popis výsledku v původním jazyce
The use of sensors in smart vehicles brings benefits and vulnerabilities. Different kinds of sensors in smart vehicles are vulnerable to cyber-attack. Until now, theinvestigation of challenges and solutions for in-vehicle cybersecurity hasn’t discussed various sensor objects and their correlation. In this study, we studied the cyber securityproblems of sensors in smart vehicles and how to overcome them. The research was designed as Systematic Literature Review (SLR) using the Kitchenham methodology with modification in the filtering phase using the artificial intelligence application, Elicit, to identify the problems, conclusions, and methodology description. Seventeenpublications from 2016 until 2023 were gained from five databases. As a result, we find that the most discussed object related to cybersecurity sensors on smart vehicles areElectronic Control Units. Spoofing and jamming is still the most addressed threat, and machine learning is the most utilized solution to be implemented in detection systems.Advanced detection systems are incorporating updated attack models. We also suggest using updated attack models and machine learning algorithms to ensure the safety and security of smart vehicle technology. All identified sensor technology correlated using mind maps under the Intelligent Transport System theory.
Název v anglickém jazyce
Cybersecurity of Sensors on Smart Vehicles: Review of Threats and Solutions
Popis výsledku anglicky
The use of sensors in smart vehicles brings benefits and vulnerabilities. Different kinds of sensors in smart vehicles are vulnerable to cyber-attack. Until now, theinvestigation of challenges and solutions for in-vehicle cybersecurity hasn’t discussed various sensor objects and their correlation. In this study, we studied the cyber securityproblems of sensors in smart vehicles and how to overcome them. The research was designed as Systematic Literature Review (SLR) using the Kitchenham methodology with modification in the filtering phase using the artificial intelligence application, Elicit, to identify the problems, conclusions, and methodology description. Seventeenpublications from 2016 until 2023 were gained from five databases. As a result, we find that the most discussed object related to cybersecurity sensors on smart vehicles areElectronic Control Units. Spoofing and jamming is still the most addressed threat, and machine learning is the most utilized solution to be implemented in detection systems.Advanced detection systems are incorporating updated attack models. We also suggest using updated attack models and machine learning algorithms to ensure the safety and security of smart vehicle technology. All identified sensor technology correlated using mind maps under the Intelligent Transport System theory.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - 2023 6th International Conference on Computer and Informatics Engineering: AI Trust, Risk and Security Management (AI Trism), IC2IE 2023
ISBN
979-8-3503-4517-9
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
266-270
Název nakladatele
IEEE (Institute of Electrical and Electronics Engineers)
Místo vydání
New York
Místo konání akce
Lombok
Datum konání akce
14. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—