Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cybersecurity of Sensors on Smart Vehicles: Review of Threats and Solutions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F23%3A39921212" target="_blank" >RIV/00216275:25530/23:39921212 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10331330" target="_blank" >https://ieeexplore.ieee.org/document/10331330</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IC2IE60547.2023.10331330" target="_blank" >10.1109/IC2IE60547.2023.10331330</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cybersecurity of Sensors on Smart Vehicles: Review of Threats and Solutions

  • Popis výsledku v původním jazyce

    The use of sensors in smart vehicles brings benefits and vulnerabilities. Different kinds of sensors in smart vehicles are vulnerable to cyber-attack. Until now, theinvestigation of challenges and solutions for in-vehicle cybersecurity hasn’t discussed various sensor objects and their correlation. In this study, we studied the cyber securityproblems of sensors in smart vehicles and how to overcome them. The research was designed as Systematic Literature Review (SLR) using the Kitchenham methodology with modification in the filtering phase using the artificial intelligence application, Elicit, to identify the problems, conclusions, and methodology description. Seventeenpublications from 2016 until 2023 were gained from five databases. As a result, we find that the most discussed object related to cybersecurity sensors on smart vehicles areElectronic Control Units. Spoofing and jamming is still the most addressed threat, and machine learning is the most utilized solution to be implemented in detection systems.Advanced detection systems are incorporating updated attack models. We also suggest using updated attack models and machine learning algorithms to ensure the safety and security of smart vehicle technology. All identified sensor technology correlated using mind maps under the Intelligent Transport System theory.

  • Název v anglickém jazyce

    Cybersecurity of Sensors on Smart Vehicles: Review of Threats and Solutions

  • Popis výsledku anglicky

    The use of sensors in smart vehicles brings benefits and vulnerabilities. Different kinds of sensors in smart vehicles are vulnerable to cyber-attack. Until now, theinvestigation of challenges and solutions for in-vehicle cybersecurity hasn’t discussed various sensor objects and their correlation. In this study, we studied the cyber securityproblems of sensors in smart vehicles and how to overcome them. The research was designed as Systematic Literature Review (SLR) using the Kitchenham methodology with modification in the filtering phase using the artificial intelligence application, Elicit, to identify the problems, conclusions, and methodology description. Seventeenpublications from 2016 until 2023 were gained from five databases. As a result, we find that the most discussed object related to cybersecurity sensors on smart vehicles areElectronic Control Units. Spoofing and jamming is still the most addressed threat, and machine learning is the most utilized solution to be implemented in detection systems.Advanced detection systems are incorporating updated attack models. We also suggest using updated attack models and machine learning algorithms to ensure the safety and security of smart vehicle technology. All identified sensor technology correlated using mind maps under the Intelligent Transport System theory.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings - 2023 6th International Conference on Computer and Informatics Engineering: AI Trust, Risk and Security Management (AI Trism), IC2IE 2023

  • ISBN

    979-8-3503-4517-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    266-270

  • Název nakladatele

    IEEE (Institute of Electrical and Electronics Engineers)

  • Místo vydání

    New York

  • Místo konání akce

    Lombok

  • Datum konání akce

    14. 9. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku