Gaussian Filtering with False Data Injection and Randomly Delayed Measurements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020599" target="_blank" >RIV/62690094:18450/23:50020599 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10217812/" target="_blank" >https://ieeexplore.ieee.org/document/10217812/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3305288" target="_blank" >10.1109/ACCESS.2023.3305288</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gaussian Filtering with False Data Injection and Randomly Delayed Measurements
Popis výsledku v původním jazyce
State estimation in cyber-physical systems is a challenging task involving integrating physical models and measurements to estimate dynamic states accurately in practical machine-to-machine and IoT deployments. However, integrating advanced wireless communication and intelligent measurements has increased vulnerability of external intrusion through a centralized server. This study addresses the challenge of Gaussian filtering for a specific type of stochastic nonlinear system vulnerable to cyber attacks and delayed measurements. These attacks occur randomly when data is transmitted from sensor nodes to remote filter nodes. To address this issue, a new cyber attack model is proposed that combines false data injection attacks and delayed measurement into a unified framework. The study also analyzes the stochastic stability of the proposed filter and establishes sufficient conditions to ensure that the filtering error remains bounded even in the presence of randomly occurring cyber attacks and delayed measurements. The proposed methodology is demonstrated and compared with other widely used approaches using simulated data to highlight its effectiveness and usefulness. Author
Název v anglickém jazyce
Gaussian Filtering with False Data Injection and Randomly Delayed Measurements
Popis výsledku anglicky
State estimation in cyber-physical systems is a challenging task involving integrating physical models and measurements to estimate dynamic states accurately in practical machine-to-machine and IoT deployments. However, integrating advanced wireless communication and intelligent measurements has increased vulnerability of external intrusion through a centralized server. This study addresses the challenge of Gaussian filtering for a specific type of stochastic nonlinear system vulnerable to cyber attacks and delayed measurements. These attacks occur randomly when data is transmitted from sensor nodes to remote filter nodes. To address this issue, a new cyber attack model is proposed that combines false data injection attacks and delayed measurement into a unified framework. The study also analyzes the stochastic stability of the proposed filter and establishes sufficient conditions to ensure that the filtering error remains bounded even in the presence of randomly occurring cyber attacks and delayed measurements. The proposed methodology is demonstrated and compared with other widely used approaches using simulated data to highlight its effectiveness and usefulness. Author
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
11
Číslo periodika v rámci svazku
Autumn
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
88637-88648
Kód UT WoS článku
001055265300001
EID výsledku v databázi Scopus
2-s2.0-85168275859