Multi-Speaker and Wide-Band Simulated Conversations as Training Data for End-to-End Neural Diarization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149424" target="_blank" >RIV/00216305:26230/23:PU149424 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10097049" target="_blank" >https://ieeexplore.ieee.org/document/10097049</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP49357.2023.10097049" target="_blank" >10.1109/ICASSP49357.2023.10097049</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Speaker and Wide-Band Simulated Conversations as Training Data for End-to-End Neural Diarization
Popis výsledku v původním jazyce
End-to-end diarization presents an attractive alternative to standard cascaded diarization systems because a single system can handle all aspects of the task at once. Many flavors of end-to-end models have been proposed but all of them require (so far non-existing) large amounts of annotated data for training. The compromise solution consists in generating synthetic data and the recently proposed simulated conversations (SC) have shown remarkable improvements over the original simulated mixtures (SM). In this work, we create SC with multiple speakers per conversation and show that they allow for substantially better performance than SM, also reducing the dependence on a fine-tuning stage. We also create SC with wide-band public audio sources and present an analysis on several evaluation sets. Together with this publication, we release the recipes for generating such data and models trained on public sets as well as the implementation to efficiently handle multiple speakers per conversation and an auxiliary voice activity detection loss.
Název v anglickém jazyce
Multi-Speaker and Wide-Band Simulated Conversations as Training Data for End-to-End Neural Diarization
Popis výsledku anglicky
End-to-end diarization presents an attractive alternative to standard cascaded diarization systems because a single system can handle all aspects of the task at once. Many flavors of end-to-end models have been proposed but all of them require (so far non-existing) large amounts of annotated data for training. The compromise solution consists in generating synthetic data and the recently proposed simulated conversations (SC) have shown remarkable improvements over the original simulated mixtures (SM). In this work, we create SC with multiple speakers per conversation and show that they allow for substantially better performance than SM, also reducing the dependence on a fine-tuning stage. We also create SC with wide-band public audio sources and present an analysis on several evaluation sets. Together with this publication, we release the recipes for generating such data and models trained on public sets as well as the implementation to efficiently handle multiple speakers per conversation and an auxiliary voice activity detection loss.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of ICASSP 2023
ISBN
978-1-7281-6327-7
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Rhodes Island
Místo konání akce
Rhodes Island, Greece
Datum konání akce
4. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—