DiaPer: End-to-End Neural Diarization With Perceiver-Based Attractors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU152298" target="_blank" >RIV/00216305:26230/24:PU152298 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10584294" target="_blank" >https://ieeexplore.ieee.org/document/10584294</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TASLP.2024.3422818" target="_blank" >10.1109/TASLP.2024.3422818</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DiaPer: End-to-End Neural Diarization With Perceiver-Based Attractors
Popis výsledku v původním jazyce
Until recently, the field of speaker diarization was dominated by cascaded systems. Due to their limitations, mainly re- garding overlapped speech and cumbersome pipelines, end-to-end models have gained great popularity lately. One of the most success- ful models is end-to-end neural diarization with encoder-decoder based attractors (EEND-EDA). In this work, we replace the EDA module with a Perceiver-based one and show its advantages over EEND-EDA; namely obtaining better performance on the largely studied Callhome dataset, finding the quantity of speakers in a conversation more accurately, and faster inference time. Further- more, when exhaustively compared with other methods, our model, DiaPer, reaches remarkable performance with a very lightweight design. Besides, we perform comparisons with other works and a cascaded baseline across more than ten public wide-band datasets. Together with this publication, we release the code of DiaPer as well as models trained on public and free data.
Název v anglickém jazyce
DiaPer: End-to-End Neural Diarization With Perceiver-Based Attractors
Popis výsledku anglicky
Until recently, the field of speaker diarization was dominated by cascaded systems. Due to their limitations, mainly re- garding overlapped speech and cumbersome pipelines, end-to-end models have gained great popularity lately. One of the most success- ful models is end-to-end neural diarization with encoder-decoder based attractors (EEND-EDA). In this work, we replace the EDA module with a Perceiver-based one and show its advantages over EEND-EDA; namely obtaining better performance on the largely studied Callhome dataset, finding the quantity of speakers in a conversation more accurately, and faster inference time. Further- more, when exhaustively compared with other methods, our model, DiaPer, reaches remarkable performance with a very lightweight design. Besides, we perform comparisons with other works and a cascaded baseline across more than ten public wide-band datasets. Together with this publication, we release the code of DiaPer as well as models trained on public and free data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Audio, Speech, and Language Processing
ISSN
1558-7916
e-ISSN
1558-7924
Svazek periodika
32
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
3450-3465
Kód UT WoS článku
001283673700005
EID výsledku v databázi Scopus
2-s2.0-85197558425