End-to-End Open Vocabulary Keyword Search With Multilingual Neural Representations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149429" target="_blank" >RIV/00216305:26230/23:PU149429 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10201906" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10201906</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TASLP.2023.3301239" target="_blank" >10.1109/TASLP.2023.3301239</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
End-to-End Open Vocabulary Keyword Search With Multilingual Neural Representations
Popis výsledku v původním jazyce
Conventional keyword search systems operate on automatic speech recognition (ASR) outputs, which causes them to have a complex indexing and search pipeline. This has led to interest in ASR-free approaches to simplify the search procedure. We recently proposed a neural ASR-free keyword search model which achieves competitive performance while maintaining an efficient and simplified pipeline, where queries and documents are encoded with a pair of recurrent neural network encoders and the encodings are combined with a dot-product. In this article, we extend this work with multilingual pretraining and detailed analysis of the model. Our experiments show that the proposed multilingual training significantly improves the model performance and that despite not matching a strong ASR-based conventional keyword search system for short queries and queries comprising in-vocabulary words, the proposed model outperforms the ASR-based system for long queries and queries that do not appear in the training data.
Název v anglickém jazyce
End-to-End Open Vocabulary Keyword Search With Multilingual Neural Representations
Popis výsledku anglicky
Conventional keyword search systems operate on automatic speech recognition (ASR) outputs, which causes them to have a complex indexing and search pipeline. This has led to interest in ASR-free approaches to simplify the search procedure. We recently proposed a neural ASR-free keyword search model which achieves competitive performance while maintaining an efficient and simplified pipeline, where queries and documents are encoded with a pair of recurrent neural network encoders and the encodings are combined with a dot-product. In this article, we extend this work with multilingual pretraining and detailed analysis of the model. Our experiments show that the proposed multilingual training significantly improves the model performance and that despite not matching a strong ASR-based conventional keyword search system for short queries and queries comprising in-vocabulary words, the proposed model outperforms the ASR-based system for long queries and queries that do not appear in the training data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING
ISSN
2329-9290
e-ISSN
2329-9304
Svazek periodika
31
Číslo periodika v rámci svazku
08
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
3070-3080
Kód UT WoS článku
001047323400008
EID výsledku v databázi Scopus
2-s2.0-85166759272