Written Term Detection Improves Spoken Term Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU154756" target="_blank" >RIV/00216305:26230/24:PU154756 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10571348" target="_blank" >https://ieeexplore.ieee.org/document/10571348</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TASLP.2024.3407476" target="_blank" >10.1109/TASLP.2024.3407476</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Written Term Detection Improves Spoken Term Detection
Popis výsledku v původním jazyce
End-to-end (E2E) approaches to keyword search (KWS) are considerably simpler in terms of training and indexing complexity when compared to approaches which use the output of automatic speech recognition (ASR) systems. This simplification however has drawbacks due to the loss of modularity. In partic- ular, where ASR-based KWS systems can benefit from external unpaired text via a language model, current formulations of E2E KWS systems have no such mechanism. Therefore, in this paper, we propose a multitask training objective which allows unpaired text to be integrated into E2E KWS without complicating indexing and search. In addition to training an E2E KWS model to retrieve text queries from spoken documents, we jointly train it to retrieve text queries from masked written documents. We show empirically that this approach can effectively leverage unpaired text for KWS, with significant improvements in search performance across a wide variety of languages. We conduct analysis which indicates that these improvements are achieved because the proposed method improves document representations for words in the unpaired text. Finally, we show that the proposed method can be used for domain adaptation in settings where in-domain paired data is scarce or nonexistent.
Název v anglickém jazyce
Written Term Detection Improves Spoken Term Detection
Popis výsledku anglicky
End-to-end (E2E) approaches to keyword search (KWS) are considerably simpler in terms of training and indexing complexity when compared to approaches which use the output of automatic speech recognition (ASR) systems. This simplification however has drawbacks due to the loss of modularity. In partic- ular, where ASR-based KWS systems can benefit from external unpaired text via a language model, current formulations of E2E KWS systems have no such mechanism. Therefore, in this paper, we propose a multitask training objective which allows unpaired text to be integrated into E2E KWS without complicating indexing and search. In addition to training an E2E KWS model to retrieve text queries from spoken documents, we jointly train it to retrieve text queries from masked written documents. We show empirically that this approach can effectively leverage unpaired text for KWS, with significant improvements in search performance across a wide variety of languages. We conduct analysis which indicates that these improvements are achieved because the proposed method improves document representations for words in the unpaired text. Finally, we show that the proposed method can be used for domain adaptation in settings where in-domain paired data is scarce or nonexistent.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ01010108" target="_blank" >VJ01010108: Robustní zpracování nahrávek pro operativu a bezpečnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING
ISSN
2329-9290
e-ISSN
2329-9304
Svazek periodika
32
Číslo periodika v rámci svazku
06
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
3213-3223
Kód UT WoS článku
001256333200007
EID výsledku v databázi Scopus
2-s2.0-85198013158