Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Written Term Detection Improves Spoken Term Detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU154756" target="_blank" >RIV/00216305:26230/24:PU154756 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10571348" target="_blank" >https://ieeexplore.ieee.org/document/10571348</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TASLP.2024.3407476" target="_blank" >10.1109/TASLP.2024.3407476</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Written Term Detection Improves Spoken Term Detection

  • Popis výsledku v původním jazyce

    End-to-end (E2E) approaches to keyword search (KWS) are considerably simpler in terms of training and indexing complexity when compared to approaches which use the output of automatic speech recognition (ASR) systems. This simplification however has drawbacks due to the loss of modularity. In partic- ular, where ASR-based KWS systems can benefit from external unpaired text via a language model, current formulations of E2E KWS systems have no such mechanism. Therefore, in this paper, we propose a multitask training objective which allows unpaired text to be integrated into E2E KWS without complicating indexing and search. In addition to training an E2E KWS model to retrieve text queries from spoken documents, we jointly train it to retrieve text queries from masked written documents. We show empirically that this approach can effectively leverage unpaired text for KWS, with significant improvements in search performance across a wide variety of languages. We conduct analysis which indicates that these improvements are achieved because the proposed method improves document representations for words in the unpaired text. Finally, we show that the proposed method can be used for domain adaptation in settings where in-domain paired data is scarce or nonexistent.

  • Název v anglickém jazyce

    Written Term Detection Improves Spoken Term Detection

  • Popis výsledku anglicky

    End-to-end (E2E) approaches to keyword search (KWS) are considerably simpler in terms of training and indexing complexity when compared to approaches which use the output of automatic speech recognition (ASR) systems. This simplification however has drawbacks due to the loss of modularity. In partic- ular, where ASR-based KWS systems can benefit from external unpaired text via a language model, current formulations of E2E KWS systems have no such mechanism. Therefore, in this paper, we propose a multitask training objective which allows unpaired text to be integrated into E2E KWS without complicating indexing and search. In addition to training an E2E KWS model to retrieve text queries from spoken documents, we jointly train it to retrieve text queries from masked written documents. We show empirically that this approach can effectively leverage unpaired text for KWS, with significant improvements in search performance across a wide variety of languages. We conduct analysis which indicates that these improvements are achieved because the proposed method improves document representations for words in the unpaired text. Finally, we show that the proposed method can be used for domain adaptation in settings where in-domain paired data is scarce or nonexistent.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/VJ01010108" target="_blank" >VJ01010108: Robustní zpracování nahrávek pro operativu a bezpečnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING

  • ISSN

    2329-9290

  • e-ISSN

    2329-9304

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    06

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    3213-3223

  • Kód UT WoS článku

    001256333200007

  • EID výsledku v databázi Scopus

    2-s2.0-85198013158