Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

FIT BUT at SemEval-2023 Task 12: Sentiment Without Borders - Multilingual Domain Adaptation for Low-Resource Sentiment Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU150880" target="_blank" >RIV/00216305:26230/23:PU150880 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2023.semeval-1.209/" target="_blank" >https://aclanthology.org/2023.semeval-1.209/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2023.semeval-1.209" target="_blank" >10.18653/v1/2023.semeval-1.209</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    FIT BUT at SemEval-2023 Task 12: Sentiment Without Borders - Multilingual Domain Adaptation for Low-Resource Sentiment Classification

  • Popis výsledku v původním jazyce

    This paper presents our proposed method for SemEval-2023 Task 12, which focuses on sentiment analysis for low-resource African lan- guages. Our method utilizes a language-centric domain adaptation approach which is based on adversarial training, where a small version of Afro-XLM-Roberta serves as a generator model and a feed-forward network as a discriminator. We participated in all three subtasks: monolingual (12 tracks), multilingual (1 track), and zero-shot (2 tracks). Our results show an improvement in weighted F1 for 13 out of 15 tracks with a maximum increase of 4.3 points for Moroccan Arabic compared to the baseline. We observed that using language family-based labels along with sequence-level input representations for the discriminator model improves the quality of the cross-lingual sentiment analysis for the languages unseen during the training. Additionally, our experimental results suggest that training the system on languages that are close in a language families tree enhances the quality of sentiment analysis for low-resource languages. Lastly, the computational complexity of the prediction step was kept at the same level which makes the approach to be interesting from a practical perspective. The code of the approach can be found in our repository.

  • Název v anglickém jazyce

    FIT BUT at SemEval-2023 Task 12: Sentiment Without Borders - Multilingual Domain Adaptation for Low-Resource Sentiment Classification

  • Popis výsledku anglicky

    This paper presents our proposed method for SemEval-2023 Task 12, which focuses on sentiment analysis for low-resource African lan- guages. Our method utilizes a language-centric domain adaptation approach which is based on adversarial training, where a small version of Afro-XLM-Roberta serves as a generator model and a feed-forward network as a discriminator. We participated in all three subtasks: monolingual (12 tracks), multilingual (1 track), and zero-shot (2 tracks). Our results show an improvement in weighted F1 for 13 out of 15 tracks with a maximum increase of 4.3 points for Moroccan Arabic compared to the baseline. We observed that using language family-based labels along with sequence-level input representations for the discriminator model improves the quality of the cross-lingual sentiment analysis for the languages unseen during the training. Additionally, our experimental results suggest that training the system on languages that are close in a language families tree enhances the quality of sentiment analysis for low-resource languages. Lastly, the computational complexity of the prediction step was kept at the same level which makes the approach to be interesting from a practical perspective. The code of the approach can be found in our repository.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/8A21015" target="_blank" >8A21015: AI-augmented automation for efficient DevOps, a model-based framework for continuous development At RunTime in cyber-physical systems</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023)

  • ISBN

    978-1-959429-99-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    1518-1524

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Toronto (online)

  • Místo konání akce

    Toronto

  • Datum konání akce

    9. 7. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku