Reinforced Labels: Multi-Agent Deep Reinforcement Learning for Point-Feature Label Placement
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU149436" target="_blank" >RIV/00216305:26230/24:PU149436 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/24:00376210
Výsledek na webu
<a href="http://cphoto.fit.vutbr.cz/reinforced-labels/" target="_blank" >http://cphoto.fit.vutbr.cz/reinforced-labels/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TVCG.2023.3313729" target="_blank" >10.1109/TVCG.2023.3313729</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reinforced Labels: Multi-Agent Deep Reinforcement Learning for Point-Feature Label Placement
Popis výsledku v původním jazyce
Over the recent years, Reinforcement Learning combined with Deep Learning techniques has successfully proven to solve complex problems in various domains, including robotics, self-driving cars, and finance. In this paper, we are introducing Reinforcement Learning (RL) to label placement, a complex task in data visualization that seeks optimal positioning for labels to avoid overlap and ensure legibility. Our novel point-feature label placement method utilizes Multi-Agent Deep Reinforcement Learning to learn the label placement strategy, the first machine-learning-driven labeling method, in contrast to the existing hand-crafted algorithms designed by human experts. To facilitate RL learning, we developed an environment where an agent acts as a proxy for a label, a short textual annotation that augments visualization. Our results show that the strategy trained by our method significantly outperforms the random strategy of an untrained agent and the compared methods designed by human experts in terms of completeness (i.e., the number of placed labels). The trade-off is increased computation time, making the proposed method slower than the compared methods. Nevertheless, our method is ideal for scenarios where the labeling can be computed in advance, and completeness is essential, such as cartographic maps, technical drawings, and medical atlases. Additionally, we conducted a user study to assess the perceived performance. The outcomes revealed that the participants considered the proposed method to be significantly better than the other examined methods. This indicates that the improved completeness is not just reflected in the quantitative metrics but also in the subjective evaluation by the participants.
Název v anglickém jazyce
Reinforced Labels: Multi-Agent Deep Reinforcement Learning for Point-Feature Label Placement
Popis výsledku anglicky
Over the recent years, Reinforcement Learning combined with Deep Learning techniques has successfully proven to solve complex problems in various domains, including robotics, self-driving cars, and finance. In this paper, we are introducing Reinforcement Learning (RL) to label placement, a complex task in data visualization that seeks optimal positioning for labels to avoid overlap and ensure legibility. Our novel point-feature label placement method utilizes Multi-Agent Deep Reinforcement Learning to learn the label placement strategy, the first machine-learning-driven labeling method, in contrast to the existing hand-crafted algorithms designed by human experts. To facilitate RL learning, we developed an environment where an agent acts as a proxy for a label, a short textual annotation that augments visualization. Our results show that the strategy trained by our method significantly outperforms the random strategy of an untrained agent and the compared methods designed by human experts in terms of completeness (i.e., the number of placed labels). The trade-off is increased computation time, making the proposed method slower than the compared methods. Nevertheless, our method is ideal for scenarios where the labeling can be computed in advance, and completeness is essential, such as cartographic maps, technical drawings, and medical atlases. Additionally, we conducted a user study to assess the perceived performance. The outcomes revealed that the participants considered the proposed method to be significantly better than the other examined methods. This indicates that the improved completeness is not just reflected in the quantitative metrics but also in the subjective evaluation by the participants.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIZ19004" target="_blank" >LTAIZ19004: Topografická analýza obrazu s využitím metod hlubokého učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
ISSN
1077-2626
e-ISSN
1941-0506
Svazek periodika
30
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
5908-5922
Kód UT WoS článku
001283711000014
EID výsledku v databázi Scopus
2-s2.0-85171750761