Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Supervised Learning in Multi-Agent Environments Using Inverse Point of View

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU132545" target="_blank" >RIV/00216305:26220/19:PU132545 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8768860" target="_blank" >https://ieeexplore.ieee.org/document/8768860</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSP.2019.8768860" target="_blank" >10.1109/TSP.2019.8768860</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Supervised Learning in Multi-Agent Environments Using Inverse Point of View

  • Popis výsledku v původním jazyce

    There are many approaches that are being used in multi-agent environment to learn agents’ behaviour. Semisupervised approaches such as reinforcement learning (RL) or genetic programming (GP) are one of the most frequently used. Disadvantage of these methods is they are relatively computational resources demanding, suffers from vanishing gradient during when machine learning approach is used and has often non-convex optimization function, which makes behaviour learning challenging. This paper introduces a method for data gathering for supervised machine learning using agent’s inverse point of view. Proposed method explores agent’s neighboring environment and collects data also from surrounding agents instead of traditional approaches that uses only agents’ sensors and knowledge. Advantage of this approach is, the collected data can be used with supervised machine learning, which is significantly less computationally demanding when compared to RL or GP. A proposed method was tested and demonstrated on Robocode game, where agents (i.e. tanks) were trained to avoid opponent tanks missiles.

  • Název v anglickém jazyce

    Supervised Learning in Multi-Agent Environments Using Inverse Point of View

  • Popis výsledku anglicky

    There are many approaches that are being used in multi-agent environment to learn agents’ behaviour. Semisupervised approaches such as reinforcement learning (RL) or genetic programming (GP) are one of the most frequently used. Disadvantage of these methods is they are relatively computational resources demanding, suffers from vanishing gradient during when machine learning approach is used and has often non-convex optimization function, which makes behaviour learning challenging. This paper introduces a method for data gathering for supervised machine learning using agent’s inverse point of view. Proposed method explores agent’s neighboring environment and collects data also from surrounding agents instead of traditional approaches that uses only agents’ sensors and knowledge. Advantage of this approach is, the collected data can be used with supervised machine learning, which is significantly less computationally demanding when compared to RL or GP. A proposed method was tested and demonstrated on Robocode game, where agents (i.e. tanks) were trained to avoid opponent tanks missiles.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP)

  • ISBN

    978-1-7281-1864-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    625-628

  • Název nakladatele

    Neuveden

  • Místo vydání

    Neuveden

  • Místo konání akce

    Budapest, Hungary

  • Datum konání akce

    1. 7. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000493442800137