Supervised Learning in Multi-Agent Environments Using Inverse Point of View
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU132545" target="_blank" >RIV/00216305:26220/19:PU132545 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8768860" target="_blank" >https://ieeexplore.ieee.org/document/8768860</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2019.8768860" target="_blank" >10.1109/TSP.2019.8768860</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Supervised Learning in Multi-Agent Environments Using Inverse Point of View
Popis výsledku v původním jazyce
There are many approaches that are being used in multi-agent environment to learn agents’ behaviour. Semisupervised approaches such as reinforcement learning (RL) or genetic programming (GP) are one of the most frequently used. Disadvantage of these methods is they are relatively computational resources demanding, suffers from vanishing gradient during when machine learning approach is used and has often non-convex optimization function, which makes behaviour learning challenging. This paper introduces a method for data gathering for supervised machine learning using agent’s inverse point of view. Proposed method explores agent’s neighboring environment and collects data also from surrounding agents instead of traditional approaches that uses only agents’ sensors and knowledge. Advantage of this approach is, the collected data can be used with supervised machine learning, which is significantly less computationally demanding when compared to RL or GP. A proposed method was tested and demonstrated on Robocode game, where agents (i.e. tanks) were trained to avoid opponent tanks missiles.
Název v anglickém jazyce
Supervised Learning in Multi-Agent Environments Using Inverse Point of View
Popis výsledku anglicky
There are many approaches that are being used in multi-agent environment to learn agents’ behaviour. Semisupervised approaches such as reinforcement learning (RL) or genetic programming (GP) are one of the most frequently used. Disadvantage of these methods is they are relatively computational resources demanding, suffers from vanishing gradient during when machine learning approach is used and has often non-convex optimization function, which makes behaviour learning challenging. This paper introduces a method for data gathering for supervised machine learning using agent’s inverse point of view. Proposed method explores agent’s neighboring environment and collects data also from surrounding agents instead of traditional approaches that uses only agents’ sensors and knowledge. Advantage of this approach is, the collected data can be used with supervised machine learning, which is significantly less computationally demanding when compared to RL or GP. A proposed method was tested and demonstrated on Robocode game, where agents (i.e. tanks) were trained to avoid opponent tanks missiles.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP)
ISBN
978-1-7281-1864-2
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
625-628
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Budapest, Hungary
Datum konání akce
1. 7. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000493442800137