Reinforcement learning in the load balancing problem for the IFDAQ of the COMPASS experiment at CERN
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00341113" target="_blank" >RIV/68407700:21340/20:00341113 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5220/0009035107340741" target="_blank" >https://doi.org/10.5220/0009035107340741</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0009035107340741" target="_blank" >10.5220/0009035107340741</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reinforcement learning in the load balancing problem for the IFDAQ of the COMPASS experiment at CERN
Popis výsledku v původním jazyce
Currently, modern experiments in high energy physics impose great demands on the reliability, efficiency, and data rate of Data Acquisition Systems (DAQ). The paper deals with the Load Balancing (LB) problem of the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN and presents a methodology applied in finding optimal solution. Machine learning approaches, seen as a subfield of artificial intelligence, have become crucial for many well-known optimization problems in recent years. Therefore, algorithms based on machine learning are worth investigating with respect to the LB problem. Reinforcement learning (RL) represents a machine learning search technique using an agent interacting with an environment so as to maximize certain notion of cumulative reward. In terms of RL, the LB problem is considered as a multi-stage decision making problem. Thus, the RL proposal consists of a learning algorithm using an adaptive ε-greedy strategy and a policy retrieval algorithm building a comprehensive search framework. Finally, the performance of the proposed RL approach is examined on two LB test cases and compared with other LB solution methods.
Název v anglickém jazyce
Reinforcement learning in the load balancing problem for the IFDAQ of the COMPASS experiment at CERN
Popis výsledku anglicky
Currently, modern experiments in high energy physics impose great demands on the reliability, efficiency, and data rate of Data Acquisition Systems (DAQ). The paper deals with the Load Balancing (LB) problem of the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN and presents a methodology applied in finding optimal solution. Machine learning approaches, seen as a subfield of artificial intelligence, have become crucial for many well-known optimization problems in recent years. Therefore, algorithms based on machine learning are worth investigating with respect to the LB problem. Reinforcement learning (RL) represents a machine learning search technique using an agent interacting with an environment so as to maximize certain notion of cumulative reward. In terms of RL, the LB problem is considered as a multi-stage decision making problem. Thus, the RL proposal consists of a learning algorithm using an adaptive ε-greedy strategy and a policy retrieval algorithm building a comprehensive search framework. Finally, the performance of the proposed RL approach is examined on two LB test cases and compared with other LB solution methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 12th International Conference on Agents and Artificial Intelligence
ISBN
978-989-758-395-7
ISSN
2184-433X
e-ISSN
—
Počet stran výsledku
8
Strana od-do
734-741
Název nakladatele
SciTePress - Science and Technology Publications
Místo vydání
Porto
Místo konání akce
Valletta
Datum konání akce
22. 2. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000570769000080