Comparative Analysis of DNS over HTTPS Detectors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU151372" target="_blank" >RIV/00216305:26230/24:PU151372 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/63839172:_____/24:10133680
Výsledek na webu
<a href="https://doi.org/10.1016/j.comnet.2024.110452" target="_blank" >https://doi.org/10.1016/j.comnet.2024.110452</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.comnet.2024.110452" target="_blank" >10.1016/j.comnet.2024.110452</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative Analysis of DNS over HTTPS Detectors
Popis výsledku v původním jazyce
DNS over HTTPS (DoH) is a protocol that encrypts DNS traffic to improve user privacy and security. However, its use also poses challenges for network operators and security analysts who need to detect and monitor network traffic for security purposes. Therefore, there are multiple DoH detection proposals that leverage machine learning to identify DoH connections; however, these proposals were often tested on different datasets, and their evaluation methodologies were not consistent enough to allow direct performance comparison. We recreated seven DoH detection proposals and evaluated them using six different experiments to answer research questions that targeted specific deployment scenarios concerning ML-model transferability, usability, and longevity. For thorough testing, we used a large Collection of DoH datasets along with a novel 5-week dataset that enabled the evaluation of data drift. Our study provides insights into the current state of DoH detection techniques and can help network operators and security analysts choose the most suitable method for their specific needs.
Název v anglickém jazyce
Comparative Analysis of DNS over HTTPS Detectors
Popis výsledku anglicky
DNS over HTTPS (DoH) is a protocol that encrypts DNS traffic to improve user privacy and security. However, its use also poses challenges for network operators and security analysts who need to detect and monitor network traffic for security purposes. Therefore, there are multiple DoH detection proposals that leverage machine learning to identify DoH connections; however, these proposals were often tested on different datasets, and their evaluation methodologies were not consistent enough to allow direct performance comparison. We recreated seven DoH detection proposals and evaluated them using six different experiments to answer research questions that targeted specific deployment scenarios concerning ML-model transferability, usability, and longevity. For thorough testing, we used a large Collection of DoH datasets along with a novel 5-week dataset that enabled the evaluation of data drift. Our study provides insights into the current state of DoH detection techniques and can help network operators and security analysts choose the most suitable method for their specific needs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010024" target="_blank" >VJ02010024: Analýza šifrovaného provozu pomocí síťových toků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Networks
ISSN
1389-1286
e-ISSN
1872-7069
Svazek periodika
2024
Číslo periodika v rámci svazku
247
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
110452-110465
Kód UT WoS článku
001237361300001
EID výsledku v databázi Scopus
2-s2.0-85191654030