Detecting DoH-Based Data Exfiltration: FluBot Malware Case Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU148949" target="_blank" >RIV/00216305:26230/23:PU148949 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/13007/" target="_blank" >https://www.fit.vut.cz/research/publication/13007/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting DoH-Based Data Exfiltration: FluBot Malware Case Study
Popis výsledku v původním jazyce
This paper presents a novel approach for detecting the FluBot malware, an advanced Android banking Trojan that has been observed in active attacks in 2021 and 2022. The proposed method uses a two-layer detection mechanism to identify FluBot network connections. In the first layer, a machine learning algorithm is used to detect DNS-over-HTTPS (DoH) within Netflow records. The second layer uses a modified version of an existing domain generation algorithm (DGA) detection algorithm to target the DoH connections associated with the FluBot malware specifically. To evaluate the effectiveness of this approach, we used a dataset consisting of FluBot network traffic captured in a controlled sandbox environment. The preliminary results show that our DoH classifier achieves high accuracy and detection rates in identifying instances of FluBot malware, while maintaining a low false positive rate.
Název v anglickém jazyce
Detecting DoH-Based Data Exfiltration: FluBot Malware Case Study
Popis výsledku anglicky
This paper presents a novel approach for detecting the FluBot malware, an advanced Android banking Trojan that has been observed in active attacks in 2021 and 2022. The proposed method uses a two-layer detection mechanism to identify FluBot network connections. In the first layer, a machine learning algorithm is used to detect DNS-over-HTTPS (DoH) within Netflow records. The second layer uses a modified version of an existing domain generation algorithm (DGA) detection algorithm to target the DoH connections associated with the FluBot malware specifically. To evaluate the effectiveness of this approach, we used a dataset consisting of FluBot network traffic captured in a controlled sandbox environment. The preliminary results show that our DoH classifier achieves high accuracy and detection rates in identifying instances of FluBot malware, while maintaining a low false positive rate.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/FW03010099" target="_blank" >FW03010099: Analýza šifrovaného provozu založena na kontextové analýze pomocí flow dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů