DoH detection: Discovering hidden DNS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00344912" target="_blank" >RIV/68407700:21240/20:00344912 - isvavai.cz</a>
Výsledek na webu
<a href="https://pesw.fit.cvut.cz/2020/PESW_2020.pdf" target="_blank" >https://pesw.fit.cvut.cz/2020/PESW_2020.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DoH detection: Discovering hidden DNS
Popis výsledku v původním jazyce
The necessity of securing users’ privacy on the internet has given the rise of a new protocol called DNSover HTTPS (DoH). It aims to replace traditional DNS for domain name translation with encryption as a benefit. Unfortunately, the laudable attempt to increase the privacy of users also brings some security threats as well. Readable information from DNS is one of the most essential data-source in computer security, especially for security forensic analysis. The DNS queries in the network can reveal malicious activity in the network like the presence of malware, botnet communication, and also data exfiltration.Thus network administrators might want to block encrypted DoH in their network, however, the currently available approaches are based on lists of IP adresses of well-known DoH providers/resolvers. This way of detection can be easily surpassed by its own private or not generally known DoH resolver. Since the presence of DoH communication might also indicate some malicious activity or at least a policy violation, we decided to find a possible way to detect DoH based on the traffic behavior. This research aims to recognize DoH from extended IP flow data by Machine Learning regardless IP addresses.
Název v anglickém jazyce
DoH detection: Discovering hidden DNS
Popis výsledku anglicky
The necessity of securing users’ privacy on the internet has given the rise of a new protocol called DNSover HTTPS (DoH). It aims to replace traditional DNS for domain name translation with encryption as a benefit. Unfortunately, the laudable attempt to increase the privacy of users also brings some security threats as well. Readable information from DNS is one of the most essential data-source in computer security, especially for security forensic analysis. The DNS queries in the network can reveal malicious activity in the network like the presence of malware, botnet communication, and also data exfiltration.Thus network administrators might want to block encrypted DoH in their network, however, the currently available approaches are based on lists of IP adresses of well-known DoH providers/resolvers. This way of detection can be easily surpassed by its own private or not generally known DoH resolver. Since the presence of DoH communication might also indicate some malicious activity or at least a policy violation, we decided to find a possible way to detect DoH based on the traffic behavior. This research aims to recognize DoH from extended IP flow data by Machine Learning regardless IP addresses.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů