DoH Insight: Detecting DNS over HTTPS by Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F20%3A10133298" target="_blank" >RIV/63839172:_____/20:10133298 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/20:00342630
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3407023.3409192" target="_blank" >http://dx.doi.org/10.1145/3407023.3409192</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3407023.3409192" target="_blank" >10.1145/3407023.3409192</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DoH Insight: Detecting DNS over HTTPS by Machine Learning
Popis výsledku v původním jazyce
Over the past few years, a new protocol DNS over HTTPS (DoH) has been created to improve users' privacy on the internet. DoH can be used instead of traditional DNS for domain name translation with encryption as a benefit. This new feature also brings some threats because various security tools depend on readable information from DNS to identify, e.g., malware, botnet communication, and data exfiltration. Therefore, this paper focuses on the possibilities of encrypted traffic analysis, especially on the accurate recognition of DoH. The aim is to evaluate what information (if any) can be gained from HTTPS extended IP flow data using machine learning. We evaluated five popular ML methods to find the best DoH classifiers. The experiments show that the accuracy of DoH recognition is over 99.9 %. Additionally, it is also possible to identify the application that was used for DoH communication, since we have discovered (using created datasets) significant differences in the behavior of Firefox, Chrome, and cloudflared. Our trained classifier can distinguish between DoH clients with the 99.9 % accuracy.
Název v anglickém jazyce
DoH Insight: Detecting DNS over HTTPS by Machine Learning
Popis výsledku anglicky
Over the past few years, a new protocol DNS over HTTPS (DoH) has been created to improve users' privacy on the internet. DoH can be used instead of traditional DNS for domain name translation with encryption as a benefit. This new feature also brings some threats because various security tools depend on readable information from DNS to identify, e.g., malware, botnet communication, and data exfiltration. Therefore, this paper focuses on the possibilities of encrypted traffic analysis, especially on the accurate recognition of DoH. The aim is to evaluate what information (if any) can be gained from HTTPS extended IP flow data using machine learning. We evaluated five popular ML methods to find the best DoH classifiers. The experiments show that the accuracy of DoH recognition is over 99.9 %. Additionally, it is also possible to identify the application that was used for DoH communication, since we have discovered (using created datasets) significant differences in the behavior of Firefox, Chrome, and cloudflared. Our trained classifier can distinguish between DoH clients with the 99.9 % accuracy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ARES '20: Proceedings of the 15th International Conference on Availability, Reliability and Security
ISBN
978-1-4503-8833-7
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Dublin, Irsko
Datum konání akce
25. 8. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—