Automated Synthesis of Commutative Approximate Arithmetic Operators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU152033" target="_blank" >RIV/00216305:26230/24:PU152033 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/CEC60901.2024.10612202" target="_blank" >http://dx.doi.org/10.1109/CEC60901.2024.10612202</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC60901.2024.10612202" target="_blank" >10.1109/CEC60901.2024.10612202</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated Synthesis of Commutative Approximate Arithmetic Operators
Popis výsledku v původním jazyce
Approximate computing, leveraging the inherent resilience to errors, emerges as a promising strategy for reducing power consumption in digital systems. The primary objective of this paper is to introduce an efficient method based on Cartesian Genetic Programming for designing approximate arithmetic circuits with commutative property. Specifically, this work focuses on the design of 8-bit approximate multipliers and 32-bit approximate adders, both serving as foundational components for hardware accelerators in neural networks. We have identified that while the design of commutative approximate adders poses no issues for evolution, the design of commutative approximate multipliers represents a challenging problem causing the commonly used CGP stuck at highly sub-optimal solutions. In response to this challenge, we propose a novel application-specific mutation operator. This operator significantly enhances the efficiency of the search process, enabling the discovery of solutions that were previously unreachable. The achieved results revealed that imposing the requirement for a commutative property does not substantially compromise the quality-error trade-offs of the obtained approximate circuits, making the resulting Pareto front comparable to that of unconstrained designs.
Název v anglickém jazyce
Automated Synthesis of Commutative Approximate Arithmetic Operators
Popis výsledku anglicky
Approximate computing, leveraging the inherent resilience to errors, emerges as a promising strategy for reducing power consumption in digital systems. The primary objective of this paper is to introduce an efficient method based on Cartesian Genetic Programming for designing approximate arithmetic circuits with commutative property. Specifically, this work focuses on the design of 8-bit approximate multipliers and 32-bit approximate adders, both serving as foundational components for hardware accelerators in neural networks. We have identified that while the design of commutative approximate adders poses no issues for evolution, the design of commutative approximate multipliers represents a challenging problem causing the commonly used CGP stuck at highly sub-optimal solutions. In response to this challenge, we propose a novel application-specific mutation operator. This operator significantly enhances the efficiency of the search process, enabling the discovery of solutions that were previously unreachable. The achieved results revealed that imposing the requirement for a commutative property does not substantially compromise the quality-error trade-offs of the obtained approximate circuits, making the resulting Pareto front comparable to that of unconstrained designs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Aproximativní neurovýpočty</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE Congress on Evolutionary Computation, CEC 2024 - Proceedings
ISBN
979-8-3503-0836-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
IEEE Computer Society
Místo vydání
Yokohama
Místo konání akce
Yokohama
Datum konání akce
30. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—